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a b s t r a c t

In this paper, a stochastic system with correlation between non-Gaussian noise and
Gaussian colored noise is investigated. We carry out the functional methods to derive
the approximate Fokker–Planck equation, and the expressions of stationary probability
density function and mean first-passage time are presented. Also we explore the effects
of correlation between non-Gaussian and Gaussian noise for the mean first-passage time.
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1. Introduction

In the past years, the effects of correlations between additive and multiplicative noise have been widely studied. The
steady-state and transient properties of the bistable systems with correlated Gaussian noise have been discussed by many
authors [1–10,20–23], and most of the previous studies have taken the assumption that the noise is Gaussian. However,
Gaussian distributions are not appropriate in some practical cases. Many experimental evidences, particularly in sensory
and biological systems [11], indicate that the study of non-Gaussian noises is necessary [12–16]. The stochastic resonance
induced by non-Gaussian colored noise has been examined [15]. The effective Markovian Fokker–Planck equation for the
stochastic system driven by non-Gaussian noise has been obtained by using a path integral approach [13]. The fact that the
stationary probability density and the mean first-passage time can be influenced by correlation intensity and correlation
time has been shown for the stochastic system with coupling between non-Gaussian and Gaussian white noise [12].
The paper is organized as follows: Section 2 is to consider a stochastic system with correlation between non-Gaussian

noise and Gaussian colored noise, and to derive the approximate Fokker–Planck equation. In Section 3 we take a special
system as an example to obtain the stationary probability density function and the mean first-passage time, and the effect
of correlation between non-Gaussian and Gaussian colored noises for the mean first-passage time is presented. Section 4
gives our conclusions to close this paper.

2. Approximative Fokker–Planck equation

Consider the Langevin equation with cross-correlated non-Gaussian and Gaussian colored noises

dx
dt
= f (x)+ g1(x)η(t)+ g2(x)ξ(t), (1)
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where η(t) is a non-Gaussian noise

dη(t)
dt
= −

1
τ1

d
dη
Vq(η)+

1
τ1
ε(t), (2)

where ε(t) is a Gaussian white noise of zero mean and correlation 〈ε(t)ε(s)〉 = 2D1δ(t − s),Vq(η) is given by

Vq(η) =
D1

τ1(q− 1)
ln
[
1+

τ1

D1
(q− 1)

η2

2

]
. (3)

q is related to Tsallis entropy [17,18], ξ(t) is a Gaussian colored noise which can be described as

dξ
dt
= −

1
τ2
ξ +

1
τ2
Γ (t), (4)

with

〈Γ (t)Γ (s)〉 = 2D2δ(t − s), (5)

〈Γ (t)ε(s)〉 = 〈Γ (s)ε(t)〉 = 2λ
√
D1D2δ(t − s). (6)

The stationary probability distribution of Eq. (2) is given by [13]

Pq(η) ∝
[
1+ (q− 1)

(
τ1

2D1

)
η2
]− 1

q−1

+

. (7)

It is obvious that for q = 1, η become a Gaussian colored noise and for q 6= 1, η is a non-Gaussian noise. In the region
|q− 1| � 1, the term η2 can be replaced by its expectation value, Eq. (2) becomes [11,16,24]

dη(t)
dt
= −

1
τeff
η +

1
τeff
ε(t), (8)

and

〈ε(t)ε(s)〉 = 2Deff δ(t − s), (9)

〈Γ (t)ε(s)〉 = 〈Γ (s)ε(t)〉 = 2λ
√
DeffD2δ(t − s), (10)

where

τeff =
2(2− q)
5− 3q

τ1, Deff =
(
2(2− q)
5− 3q

)2
D. (11)

For the initial condition that at time t = 0, the random variables ξ and η have the values ξ0 and η0 respectively, and the
solutions of Eqs. (4) and (8) can be written as

ξ(t) = ξ0 exp
(
−
t
τ2

)
+
1
τ2

∫ t

0
exp

(
−
t − t ′

τ2

)
Γ (t ′)dt ′, (12)

η(t) = η0 exp
(
−
t
τeff

)
+
1
τeff

∫ t

0
exp

(
−
t − t ′

τeff

)
ε(t ′)dt ′. (13)

We therefore have

〈ξ(t)η(s)〉 = ξ0η0 exp
(
−
t
τ2
−
s
τeff

)
+
2λ
√
DeffD2

τeff τ2

∫ min(t,s)

0
exp

(
−
t
τ2
−
s
τeff
+

(
1
τ2
+
1
τeff

)
t ′
)
dt ′

= ξ0η0 exp
(
−
t
τ2
−
s
τeff

)
+
2λ
√
DeffD2

τeff + τ2
exp

(
−
t
τ2
−
s
τeff

)
?

(
exp

(
−
|t − s|
τ

)
− 1

)
, (14)

where τ = τeff for t < s and τ = τ2 for t ≥ s.
For large t, s, the cross-correlation function is independent of the initial value and is only a function of the time difference
t − s, namely,

〈ξ(t)η(s)〉 =
2λ
√
DeffD2

τeff + τ2
exp

(
−
|t − s|
τ

)
. (15)
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According to the stochastic Liouville equation,the probability density P(x, t) obeys

∂

∂t
P(x, t) =

∂

∂t
〈δ(x(t)− x)〉

= −
∂

∂x
f (x)P(x, t)−

∂

∂x
g1(x)〈η(t)δ(x(t)− x)〉 −

∂

∂x
g2(x)〈ξ(t)δ(x(t)− x)〉. (16)

Using the fact f (y) ∂
∂xδ(y− x) =

∂
∂x [f (x)δ(y− x)] and the Novikov theorem, we have

〈η(t)δ(x(t)− x)〉 = −
∂

∂x

∫ t

0

Deff
τeff
exp

(
−
t − s
τeff

) 〈
δ(x(t)− x)

δx(t)
δη(s)

〉
ds

−
∂

∂x

∫ t

0

2λ
√
D2Deff

τeff + τ2
exp

(
−
t − s
τeff

) 〈
δ(x(t)− x)

δx(t)
δξ(s)

〉
ds. (17)

The functional derivative δx(t)
δη(s) satisfies

δx(t)
δη(s)

= θ(t − s)
{
g1(x(s))+

∫ t

s
[f ′(x(t ′))+ g ′1(x(t

′))η(t ′)+ g ′2(x(t
′))ξ(t ′)]

δx(t ′)
δη(s)

dt ′
}
. (18)

Here θ(t − s) is the unit step function. Its solution is

δx(t)
δη(s)

= θ(t − s)g1(x(s)) exp
{∫ t

s
[f ′(x(t ′))+ g ′1(x(t

′))η(t ′)+ g ′2(x(t
′))ξ(t ′)]dt ′

}
, (19)

where f ′(x) denotes the first derivatives of f with respect to x. Since

d
dt
g1(x(t)) =

g ′1(x(t
′))

g1(x(t ′))
[f (x(t))+ g1(x(t))η(t)+ g2(x(t))ξ(t)]g1(x(t)), (20)

then the integral of Eq. (20) gives

g1(x(s)) = g1(x(t)) exp
{
−

∫ t

s

g ′1(x(t
′))

g1(x(t ′))
[f (x(t ′))+ g1(x(t ′))η(t ′)+ g2(x(t ′))ξ(t ′)]dt ′

}
. (21)

Combining Eqs. (19) and (21),we get

δx(t)
δη(s)

= θ(t − s)g1(x(t)) exp
{∫ t

s

[
f ′(x(t ′))−

g ′1(x(t
′))

g1(x(t ′))
f (x(t ′))

+ g ′2(x(t
′))ξ(t ′)−

g ′1(x(t
′))

g1(x(t ′))
g2(x(t ′))ξ(t ′)

]
dt ′
}
. (22)

According to the Ansatz of Hanggi, we have the following approximation like Ref. [19]

〈η(t)δ(x(t)− x)〉 ≈ −
∂

∂x
g1(x)

∫ t

0

Deff
τeff
exp

(
−
t − s
τeff

) 〈
δ(x(t)− x) ∗ exp(f ′(xs)−

g ′1(xs)
g1(xs)

f (xs))(t − s)
〉
ds

−
∂

∂x
g2(x)

∫ t

0

2λ
√
D2Deff

τeff + τ2
exp

(
−
t − s
τeff

) 〈
δ(x(t)− x) ∗ exp

(
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
)
(t − s)

〉
ds

= −
Deff

1− τeff
[
f ′(xs)−

g ′1(xs)
g1(xs)

f (xs)
] ∂
∂x
g1(x)P(x, t)

−
2λ
√
D2Deff τeff

(τeff + τ2)
(
1− τeff

(
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
)) ∂
∂x
g2(x)P(x, t), (23)

where xs is the steady-state value of deterministic system.
Similarly, we have

〈ξ(t)δ(x(t)− x)〉 ≈ −
∂

∂x
g2(x)

∫ t

0

D2
τ2
exp

(
−
t − s
τ2

) 〈
δ(x(t)− x) ∗ exp

(
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
)
(t − s)

〉
ds

−
∂

∂x
g1(x)

∫ t

0

2λ
√
D2Deff

τeff + τ2
exp

(
−
t − s
τ2

) 〈
δ(x(t)− x) ∗ exp

(
f ′(xs)−

g ′1(xs)
g1(xs)

f (xs)
)
(t − s)

〉
ds
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= −
D2

1− τ2
[
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
] ∂
∂x
g2(x)P(x, t)

−
2λ
√
D2Deff τ2

(τeff + τ2)
(
1− τ2

(
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
)) ∂
∂x
g1(x)P(x, t). (24)

Inserting Eqs. (23) and (24) into Eq. (16), the approximate Fokker–Planck equation is obtained

∂

∂t
P(x, t) = −

∂

∂x
f (x)P(x, t)+

Deff

1− τeff
[
f ′(xs)−

g ′1(xs)
g1(xs)

f (xs)
] ∂
∂x
g1(x)

∂

∂x
g1(x)P(x, t)

+
2λ
√
D2Deff τeff

(τeff + τ2)
(
1− τeff

(
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
)) ∂
∂x
g1(x)

∂

∂x
g2(x)P(x, t)

+
D2

1− τ2
[
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
] ∂
∂x
g2(x)

∂

∂x
g2(x)P(x, t)

+
2λ
√
D2Deff τ2

(τeff + τ2)
(
1− τ2

(
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
)) ∂
∂x
g2(x)

∂

∂x
g1(x)P(x, t). (25)

where the approximation is valid under the following conditions:

1− τ2

[
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
]
> 0

1− τeff

[
f ′(xs)−

g ′2(xs)
g2(xs)

f (xs)
]
> 0.

3. Case study: Symmetric bistable system

As a special case, we consider the bistable system

dx
dt
= x− x3 + xη(t)+ ξ(t). (26)

3.1. Steady-state distribution

The approximate Fokker–Planck equation corresponding to Eq. (26) can be written as

∂

∂t
P(x, t) = −

∂

∂x
A(x)P(x, t)+

∂2

∂x2
B(x)P(x, t), (27)

where

A(x) = x− x3 +
Deff

1+ 2τeff
x+

2λ
√
D2Deff τeff

(τ2 + τeff )(1+ 2τeff )
,

B(x) =
Deff

1+ 2τeff
x2 +

{
2λ
√
D2Deff τeff

(τ2 + τeff )(1+ 2τeff )
+

2λ
√
D2Deff τ2

(τ2 + τeff )(1+ 2τ2)

}
x+

D2
1+ 2τ2

. (28)

Then the steady-state probability distribution function Pst(x) can be obtained as
(a) when λ2 > (τ2 + τeff )

2(1+ 2τeff )(1+ 2τ2)/(τ2 + τeff + 4τ2τeff )2,

Pst(x) =
N1
B(x)

exp

− 1+ 2τeffDeff

1
2
x2 − cx+

c2 + a− e
2

ln|x2 + cx+ e|

−
c(c2 + a)− 3ce− 2b

4
√
c2
4 − e

ln
|x+ c

2 −

√
c2
4 − e|

|x+ c
2 +

√
c2
4 − e|

 ; (29)
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Fig. 1. The stationary probability distribution function. Pst (x). (a) D1 = 0.5,D2 = 0.5, τ1 = 0.1, τ2 = 0.5, q = 0.7 are fixed. λ takes 0 (point line), 0.3
(dashed line), 0.5 (dotted line), 0.7 (solid line). (b) D1 = 0.3,D2 = 0.3, τ1 = 0.01, τ2 = 0.1, λ = 0.1 are fixed. q takes 1.0 (solid line), 1.3 (dashed line), 1.4
(dotted line), 1.5 (point line).

(b) when λ2 < (τ2 + τeff )
2(1+ 2τeff )(1+ 2τ2)/(τ2 + τeff + 4τ2τeff )2,

Pst(x) =
N2
B(x)

exp

− 1+ 2τeffDeff

1
2
x2 − cx+

c2 + a− e
2

ln|x2 + cx+ e|

−
c(c2 + a)− 3ce− 2b

2
√
e− c2

4

Arctg

 1√
e− c2

4

(
x+

c
2

) ; (30)

(c) when λ2 = (τ2 + τeff )2(1+ 2τeff )(1+ 2τ2)/(τ2 + τeff + 4τ2τeff )2,

Pst(x) =
N3
B(x)

exp
{
−
1+ 2τeff
Deff

[
1
2
x2 − cx+

c2 + a− e
2

ln|x2 + cx+ e| + (c(c2 + a)− 3ce− 2b)
1

2x+ c

]}
; (31)

where a = −1− Deff
1+2τeff

, b = −
2λ
√
D2Deff τeff

(τ2+τeff )(1+2τeff )
, c =

2λ
√
D2Deff

τ2+τeff
(
τeff
Deff
+

τ2(1+2τeff )
Deff (1+2τ2)

), e = D2(1+2τeff )
Deff (1+2τ2)

,N1,N2,N3 are normalization
constants.
The critical curve separating the bimodal and unimodal regions is

λ2D2Deff τ 22
(τ2 + τeff )2(1+ 2τ2)2

+
1
27

(
2Deff
1+ 2τeff

− 1
)3
= 0. (32)

The approximate steady-state distribution function Pst(x) is plotted in Fig. 1. It can be seen from Fig. 1(a) that when
parameters D1 = 0.5,D2 = 0.5, τ1 = 0.1, τ2 = 0.5, q = 0.7 are fixed, the curves of SPD changed from the bimodal to
unimodal with the λ increasing from 0 to 0.7, whichmeans that the noise-induced transition phenomenon occurs. The same
phenomena would happen when D1 = 0.3,D2 = 0.3, τ1 = 0.01, τ2 = 0.1, λ = 0.1 are fixed and q changed from 1 to 1.5,
see Fig. 1(b).

3.2. Mean first-passage time

The approximate expression of the MFPT for a particle to reach the final state x2 = 1 from the initial state x1 = −1 is

T (x1 → x2) =
∫ 1

−1

dx
B(x)Pst(x)

∫ x

−∞

Pst(y)dy. (33)

Fig. 2(a) shows that theMFPT as a function ofD1 is increasedwhen λ increased. The curve is changed frommonotonically
decreasing function to a function which has a peak. Fig. 2(b) shows that the peak of the MFPT moves to the right when q
decreased.
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Fig. 2. The mean first-passage time as a function of parameter D1 . (a) D2 = 0.5, τ1 = 0.1, τ2 = 0.5, q = 0.7 are fixed, λ takes 0 (solid line), 0.3 (dashed
line), 0.5 (dotted line), 0.7 (point line). (b) D2 = 0.5, τ1 = 0.01, τ2 = 0.05, λ,= 0.3 are fixed, q takes 0.5 (point line), 0.75 (dotted line), 1 (dashed line),
1.25 (solid line).

3.3. Numerical simulations

To verify the validity of our analytical result, it is necessary to perform numerical simulation. Like [12], second-order
Runge–Kutta algorithm with a time step of1t = 10−3 is adopted. For the general problem

dx
dt
= f (x)+ g1(x)η(t)+ g2(x)ξ(t),

dη(t)
dt
= ρ(η(t))+

1
τ1
ε(t),

dξ
dt
= −

1
τ2
ξ +

1
τ2
Γ (t), (34)

the algorithm is as follows:

x(t +1t) = x(t)+
1t
2
[f (x)+ f (x1)+ g1(x)η + g1(x1)η1 + g2(x)ξ + g2(x1)ξ1],

x1 = x(t)+ f (x)1t + g1(x)η1t + g2(x)ξ1t,

η(t +1t) = η(t)+
1t
2
[ρ(η)+ ρ(η1)] +

R1
τ1
,

η1 = η(t)+ ρ(η)1t +
R′1
τ
,

ξ1 = ξ(t)−
ξ

τ2
1t +

R′2
τ2
,

ξ(t +1t) = ξ(t)+
1t
2

[
−
ξ

τ2
−
ξ1

τ2

]
+
R2
τ2
, (35)

where
R′1 = R1 =

√
2D11tZ1,

R′2 = R2 =
√
2D21tZ1. (36)

The random number Z1, Z2 can be generated as follows:
Z1 = w1

Z2 = λw1 + (1− λ2)
1
2w2. (37)

Herew1, w2 are independent Gaussian random numbers.
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Fig. 3. The stationary probability distribution function. Pst (x). (a) D1 = 0.5,D2 = 0.5, τ1 = 0.1, τ2 = 0.5, q = 0.7 are fixed. λ takes 0 (∗), 0.3 (×), 0.5 (+),
0.7 (·). (b) D1 = 0.3,D2 = 0.3, τ1 = 0.01, τ2 = 0.1, λ = 0.1 are fixed. q takes 1.0 (×), 1.3 (·), 1.4 (+), 1.5 (∗).

The numerical results of the steady-state distribution function are plotted in Fig. 3. The same parameters are used in
Figs. 1 and 3. It can be seen that the analytical results are consistent with the numerical computations.

4. Conclusions

The approximate Fokker–Planck equation and the mean first-passage time are considered for a stochastic system with
correlation between non-Gaussian noise and Gaussian colored noise. Then we examine the effects of parameters λ and q for
the steady-state probability distribution function and mean first-passage time. Numerical simulation is performed to check
the validity of analytical results. It is shown that the analytical results are consistent with the numerical computations.
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