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We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. W
that the mass spectrum of such a system is bounded bym<m<2M /mK , wherem is the usual chemical
potential,M is an intrinsic dimensional scale parameter for the motion of an event in space time, andmK is an
additional mass potential of the ensemble. For the system including both particles and antiparticles, w
nonzero chemical potentialm, the mass spectrum is shown to be bounded byumu<m<2M /mK , and a special
type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condens
and show that it corresponds to a phase transition from the sector of continuous relativistic mass distribu
to a sector in which the boson mass distribution becomes sharp at a definite massM /mK . This phenomenon
provides a mechanism for the mass distribution of the particles to be sharp at some definite v
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I. INTRODUCTION

There have been a number of papers in the past@1–4#,
which discuss the properties of an ideal relativistic Bose
with a nonzero chemical potentialm. Particular attention has
been given to the behavior of the Bose-Einstein condensa
and the nature of the phase transition ind space dimensions
@4,5#. The basic work was done many years ago by Ju¨ttner
@6#, Glaser @7#, and more recently by Landsberg an
Dunning-Davies@8# and Nieto @9#. These works were al
done in the framework of the usual on-shell relativistic s
tistical mechanics.

To describe an ideal Bose gas in the grand canonical
semble, the usual expression for the number of bosonsN in
relativistic statistical mechanics is

N5V(
k
nk5V(

k

1

e~Ek2m!/T21
, ~1.1!

whereV is the system’s three volume,Ek5Ak21m2, and
T is the absolute temperature@we use the system of units i
which \5c5kB51; we also use the metri
gmn5(2,1,1,1)], and one must require thatm<m in or-
der to ensure a positive-definite value fornk , the number of
bosons with momentumk. Here,N is assumed to be a con
served quantity, so that it makes sense to talk of a box
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N bosons. This can no longer be true onceT*m @10#; at
such temperatures quantum field theory requires consider
ation of particle-antiparticle pair production. IfN̄ is the num-
ber of antiparticles, thenN and N̄ by themselves are not
conserved butN2N̄ is. Therefore, the high-temperature limit
of Eq. ~1.1! is not relevant in realistic physical systems.

The introduction of antiparticles into the theory in a sys-
tematic way was made by Haber and Weldon@10,11#. They
considered an ideal Bose gas with a conserved quantum
number~referred to as ‘‘charge’’! Q, which corresponds to a
quantum mechanical particle number operator commuting
with the HamiltonianH.1 All thermodynamic quantities may
be then obtained from the grand partition function
Tr$exp@2(H2mQ)/T#% considered as a function ofT,V, and
m @12#. The formula for the conserved net charge, which
replaces Eq.~1.1!, reads2 @10#

Q5V(
k

F 1

e~Ek2m!/T21
2

1

e~Ek1m!/T21G . ~1.2!

In such a formulation a boson-antiboson system is describe
by only one chemical potentialm; the sign ofm indicates
whether particles outnumber antiparticles or vice versa. The
requirement that bothnk and n̄k be positive definite leads to
the important relation

el
-

1In the manifestly covariant theory which we shall use in our
study, this charge is naturally associated with particles and antipar
ticles which are distinguished by the off-shell structure, as in quan-
tum field theory@10#.
2The standard recipe according to which all additive thermody-

namic quantities are reversed for antiparticles is used.
4029 © 1996 The American Physical Society
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umu<m. ~1.3!

The sum overk in Eq. ~1.2! can be replaced by an integral
so that the charge densityr[Q/V becomes

r5
1

2p2E
0

`

k2dkF 1

e~Ek2m!/T21
2~m→2m!G , ~1.4!

which is an implicit formula form as a function ofr and
T, and in the regionT@m it reduces to

r>
mT2

3
. ~1.5!

For T above some critical temperatureTc , one can always
find am (umu<m) such that Eq.~1.4! holds. BelowTc , no
suchm can be found, and Eq.~1.4! should be interpreted as
the charge density of the excited states:r2r0 wherer0 is
the charge density of the ground state@10# @with k50;
clearly, this state is given with zero weight in the integra
~1.4!#. The critical temperatureTc at which Bose-Einstein
condensation occurs corresponds tom56m ~depending on
the sign ofr). Thus, one setsumu5m in Eq. ~1.4! and ob-
tains, via Eq.~1.5! ~provided thaturu@m3),

Tc5A3uru
m

. ~1.6!

Below Tc , Eq. ~1.4! is an equation forr2r0 , so that the
charge density in the ground state is

r05r@12~T/Tc!
2#. ~1.7!

It follows from Eq. ~1.6! that any ideal Bose gas will con-
dense at a relativistic temperature (Tc@m), provided that
uru@m3.

Recently, an analogous phenomenon has been studie
relativistic quantum field theory@11,13–15#. For relativistic
fields, Bose-Einstein condensation occurs at high tempe
tures and can be interpreted in terms of a spontaneous s
metry breaking@11#.

In this paper we shall use a manifestly covariant form
statistical mechanics which has more general structure th
the standard forms of relativistic statistical mechanics, b
which reduces to those theories in a certain limit, to be d
scribed precisely below. In fact, it is one of the principl
aims of this work to provide a mechanism for which thi
limit can be realized on a statistical level. The results that w
obtain are different from those of the standard theories
high temperatures. These theories, which are characteri
classically by mass-shell constraints, and the use, in quan
field theory, of fields which are constructed on the basis
on-mass-shell free fields, are associated with the statist
treatment ofworld linesand hence, considerable coherenc
~in terms of the macroscopic structure of whole world line
as the elementary objects of the theory! is implied. In non-
relativistic statistical mechanics, the elementary objects
the theory are points. The relativistic analogue of this esse
tially structureless foundation for a statistical theory is the s
of points in spacetime, i.e., the so-calledevents, not the
,
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world lines ~Currie, Jordan, and Sudarshan@16# have dis-
cussed the difficulty of constructing a relativistic mechanics
on the basis of world lines!.

The mass of particles in a mechanical theory of events i
necessarily a dynamical variable, since the classical phas
space of the relativistic set of events consists of the spac
time and energy-momentum coordinates$qi ,t i ;pi ,Ei%, with
no a priori constraint on the relation between thepi and the
Ei , and hence, such theories are ‘‘off shell.’’ It is well
known from the work of Newton and Wigner@17# that on-
shell relativistic quantum theories such as those governed b
Klein-Gordon or Dirac-type equations do not provide local
descriptions~the wave functions corresponding to localized
particles are spread out!; for such theories the notion of en-
sembles over local initial conditions is difficult to formulate.
The off-shell theory that we shall use here is, however, pre
cisely local in both its first and second quantized forms
@18,19#.

The phenomenologial predictions of on-shell theories
furthermore, provide equations of state which appear to b
too rigid. Shuryak@20# has obtained equations of state which
are more realistic by taking into account the spectrum o
mass as seen in the resonance spectrum of strongly intera
ing matter. We have shown@21# that Shuryak’s ‘‘realistic’’
equation of state follows in a natural way from the mass
distribution functions of the off-shell theory.

We finally remark that the standard formulations of quan-
tum relativistic statistical mechanics, and quantum field
theory at finite temperature, lack manifest covariance on
fundamental level. As for nonrelativistic statistical mechan-
ics, the partition function is described by the Hamiltonian,
which is not an invariant object, and hence, thermodynami
mean values do not have tensor properties.@One could con-
sider the invariantpmn

m in place of the Hamiltonian@22#,
where nm is a unit four-vector; this construction~supple-
mented by a spacelike vector othogonal tonm) implies an
induced representation for spacetime. The quantity that take
the place of the parametert is thenxmn

m. This construction
is closely related to the problem pointed out by Currie, Jor
dan, and Sudarshan@16#, for which different world lines are
predicted dynamically by the change in the form of the ef-
fective Hamiltonian in different frames.# Since the form of
such a theory is not constrained by covariance requirement
its dynamical structure and predictions may be different tha
those for a theory which satisifies these requirements. Fo
example, the canonical distribution of Pauli@23# for the free
Boltzmann gas has a high-temperature limit in which the
energy is given by 3kBT, which does not correspond to any
known equipartition rule, but for the corresponding distribu-
tion for the manifestly covariant theory, the limit is 2kBT,
corresponding to12 kBT for each of the four relativistic de-
grees of freedom. For the quantum field theories at finite
temperature, the path integral formulation@24# replaces the
Hamiltonian in the canonical exponent by the Lagrangian
due to the infinite product of factors^fup& ~transition matrix
element of the canonical field and its conjugate required t
give a Weyl-ordered Hamiltonian its numerical value!. How-
ever, it is thet variable which is analytically continued to
construct the finite-temperature canonical ensemble, com
pletely removing the covariance of the theoretical frame
work. One may argue that some frame has to be chosen f
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the statistical theory to be developed, and perhaps even
temperature to have a meaning, but as we have remar
above, the requirement of relativistic covariance has dynam
cal consequences~note that the model Lagrangians used
the noncovariant formulations are established with the cri
rion of relativistic covariance in mind!, and we argue that the
choice of a frame, if necessary for some physical reas
such as the definition and measurement of temperatu
should be made in the framework of a manifestly covaria
structure.

We consider, in this paper, a relativistic Bose gas with
the framework of a manifestly covariant relativistic statistic
mechanics@25–27#. We obtain the expressions for characte
istic thermodynamic quantities and show that they coinci
quantitatively, in the narrow mass-width approximation, wit
those of the relativistic on-shell theory, except for the valu
of the average energy~which differs by a factor 2/3, as re-
marked above!. We introduce antiparticles and discuss th
high-temperature Bose-Einstein condensation in such
particle-antiparticle system. We show that it corresponds to
phase transition to a high-temperature form of the usual o
shell relativistic kinetic theory. In the following, we briefly
review the manifestly covariant mechanics and quantum m
chanics which forms the basis of our study of relativist
statistical mechanics.

In the framework of a manifestly covariant relativistic sta
tistical mechanics, the dynamical evolution of a system
N particles, for the classical case, is governed by equatio
of motion that are of the form of Hamilton equations for th
motion ofN eventswhich generate the space time trajecto
ries ~particle world lines! as functions of a continuous
Poincare´-invariant parametert, called the ‘‘historical time’’
@28,29#. These events are characterized by their positio
qm5(t,q) and energy-momenta pm5(E,p) in
an 8N-dimensional phase space. For the quantum case,
system is characterized by the wav
function ct(q1 ,q2 , . . . ,qN)PL2(R4N), with the
measure d4q1d

4q2•••d
4qN[d4Nq, (qi[qi

m ;m50,1,2,3;
i51,2, . . . ,N), describing the distribution of events, which
evolves with a generalized Schro¨dinger equation@29#. The
collection of events~called ‘‘concatenation’’ @30#! along
each world line corresponds to aparticle, and hence, the
evolution of the state of theN-event system describes,a
posteriori, the history in space and time of anN-particle
system.

For a system ofN interacting identical events~and, hence,
particles!, one takes@29#

K5(
i

pi
mpim
2M

1V~q1 ,q2 , . . . ,qN!, ~1.8!

whereM is a given fixed parameter~an intrinsic property of
the particles!, with the dimension of mass, taken to be th
same for all the particles of the system. The Hamilton equ
tions are

dqi
m

dt
5

]K

]pim
5
pi

m

M
,
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dpi
m

dt
52

]K

]qim
52

]V

]qim
. ~1.9!

In the quantum theory, the generalized Schro¨dinger equation

i
]

]t
ct~q1 ,q2 , . . . ,qN!5Kct~q1 ,q2 , . . . ,qN!

~1.10!

describes the evolution of theN-body wave function
ct(q1 ,q2 , . . . ,qN). To illustrate the meaning of this wave
function, consider the case of a single free event. In this ca
~1.10! has the formal solution

ct~q!5~e2 iK0tc0!~q! ~1.11!

for the evolution of the free wave packet. Let us represe
ct(q) by its Fourier transform, in the energy-momentum
space:

ct~q!5
1

~2p!2
E d4pe2 i ~p2/2M ! teip•qc0~p!, ~1.12!

where p2[pmpm , p•q[pmqm , and c0(p) corresponds to
the initial state. Applying the Ehrenfest arguments of statio
ary phase to obtain the principal contribution toct(q) for a
wave packet atpc

m , one finds@pc
m is the peak value in the

distributionc0(p)]

qc
m.

pc
m

M
t, ~1.13!

consistent with the classical equations~1.9!. Therefore, the
central peak of the wave packet moves along the classi
trajectory of an event, i.e., the classical world line.

In the case thatpc
05Ec,0, we see, as in Stueckelberg’s

classical example@28#, that

dtc
dt

.
Ec

M
,0.

It has been shown@30# in the analysis of an evolution opera
tor with minimal electromagnetic interaction, of the form

K5
@p2eA~q!#2

2M
,

that theCPT-conjugate wave function is given by

ct
CPT~ t,q!5ct~2t,2q!, ~1.14!

with e→2e. For the free wave packet, one has

ct
CPT~q!5

1

~2p!2
E d4pe2 i ~p2/2M ! te2 ip•qc0~p!.

~1.15!

The Ehrenfest motion in this case is

qc
m.2

pc
m

M
t;
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if Ec,0, we see that the motion of the event in th
CPT-conjugate state is in the positive direction of time, i.e

dtc
dt

.2
Ec

M
5

uEcu
M

, ~1.16!

and one obtains the representation of a positive energy
neric event with the opposite sign of charge, i.e., the antip
ticle.

It is clear from the form of Eq.~1.10! that one can con-
struct relativistic transport theory in a form analogous to th
of the nonrelativistic theory; a relativistic Boltzmann equa
tion and its consequences, for example, was studied in R
@26#.

As a simple example of the implications of the classic
dynamical equations~1.9!, consider the problem of a relativ-
istic particle in a uniform external ‘‘gravitational’’ field, with
evolution function

K5
pmp

m

2M
1Mgz ~1.17!

~the external potential breaks the invariance of the evoluti
function, but that will not affect the illustrative value of the
example! with initial conditions t(0)50, ṫ(0)5a,
z(0)5h, ż(0)50, resulting in the solution

z52
1

2
gt21h, t5at1t0 ,

E5Mc2a, pz52Mgt. ~1.18!

The invariant variablet replacest in describing the dynami-
cal evolution of the system. The generator of the motion

K5
pz
22E2/c2

2M
1mgz5

1

2
Mc2a25 const, ~1.19!

as required. The total energy of the particle in this cas
including both increase of momentum and decrease of d
namical mass, is constant also. The effective particle m
m̃ is given by

m̃5
1

c
A~E/c!22pz

25MaA12
g2t2

c2a2. ~1.20!

Expanding this out in the nonrelativistic limitc→`, one
obtains@with t252(h2z)/g#

m̃>Ma2
Mg

ac2
~h2z!, ~1.21!

and we recognizeMg(h2z)/c2 as the mass shift induced by
the potential term. The factora arises due to the choice o
initial conditions, i.e., fort50,m̃5Ma, and notM ~for t
sufficiently large, under this unbounded potential, the qua
tity in the square root could become negative, and the p
ticle could become tachyonic!. Note that it is themassof the
particle which carries dynamical information~the total en-
ergy is constant, but the mass is ‘‘redshifted’’ by the pote
tial! and that has the correspondence with nonrelativistic e
e
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ergy, through the mass-energy equivalence, that we obs
in the laboratory. This point is discussed in more detail
for example, Refs.@31,32#.

II. IDEAL RELATIVISTIC BOSE GAS
WITHOUT ANTIPARTICLES

To describe an ideal gas of events obeying Bose-Eins
statistics in the grand canonical ensemble, we use the exp
sion for the number of events found in@25#,

N5V~4!(
km

nkm5V~4!(
km

1

e~E2m2mK m
2/2M !/T21

,

~2.1!

where V(4) is the system’s four volume and
m2[2k252kmkm ; mK is an additional mass potential@25#,
which arises in the grand canonical ensemble as the der
tive of the free energy with respect to the value of the d
namical evolution functionK, interpreted as the invarian
mass of the system. In the kinetic theory@25#, mK enters as a
Lagrange multiplier for the equilibrium distribution forK, as
m is for N, and 1/T for E. We shall see, in the following,
how mK plays a fundamental role in determining the stru
ture of the mass distribution. In order to simplify subseque
considerations, we shall take it to be a fixed parameter.

To ensure a positive-definite value fornkm, the number
density of bosons with four-momentumkm, we require that

m2m2mK

m2

2M
>0. ~2.2!

The discriminant for the left-hand side~lhs! of the inequality
must be non-negative, i.e.,

m<
M

2mK
. ~2.3!

For suchm, Eq. ~2.2! has the solution

m1[
M

mK
S 12A12

2mmK

M D<m<
M

mK
S 11A12

2mmK

M D
[m2 . ~2.4!

For smallmmK /M , the region~2.4! may be approximated by

m<m<
2M

mK
. ~2.5!

One sees thatmK determines an upper bound of the ma
spectrum, in addition to the usual lower boundm>m. In
fact, smallmK admits a very large range of off-shell mas
and, hence, can be associated with the presence of st
interactions@33#.

Replacing the sum overkm ~2.1! by an integral, one ob-
tains, for the density of events per unit spacetime volu
n[N/V(4) @34#,

n5
1

4p3E
m1

m2
dmE

2`

`

db
m3sinh2b

e~mcoshb2m2mKm
2/2M !/T21

,

~2.6!
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wherem1 andm2 are defined in Eq.~2.4!, and we have used
the parametrization@26#

p05m coshb,

p15m sinhb sinu cosf,

p25m sinhb sinu sinf,

p35m sinhb cosu,

0<u,p, 0<f,2p, 2`,b,`.

In this paper we shall restrict ourselves to the case of h
temperature alone:

T@
M

mK
. ~2.7!

It is then possible to use, for simplicity, the Maxwell
Boltzmann form for the integrand, and to rewrite Eq.~2.6! in
the form

n5
em/T

4p3E
m1

m2
m3dmE

2`

`

sinh2bdbe2mcoshb/TemKm
2/2MT,

~2.8!

which reduces, upon integrating outb, to @27#

n5
Tem/T

4p3 E
m1

m2
dmm2K1SmT DemKm

2/2MT, ~2.9!

whereKn(z) is the Bessel function of the third kind~imagi-
nary argument!. Sincem<m<m2<2M /mK ,

mKm
2

2MT
<

mK~2M /mK!2

2MT
5

2M

TmK
!1, ~2.10!

in view of Eq. ~2.7!, and also

m

T
<
m

T
<

2M

TmK
!1. ~2.11!

Therefore, one can neglect the exponentials in Eq.~2.9!, and
for K1(m/T) use the asymptotic formula@35#

Kn~z!;
1

2
G~n!S z2D

2n

, z!1. ~2.12!

Then, we obtain

n>
T2

4p3E
m1

m2
dmm5

T2

2p3 S MmK
D 2A12

2mmK

M
.

~2.13!

From this equation, one can identify the high-temperatu
mass distribution for the system we are studying, so th
now,
gh

-

re
at,

^ml &5

E
m1

m2
dmml 11

E
m1

m2
dmm

5
2

l 12

m2
l 122m1

l 12

m2
22m1

2 . ~2.14!

In particular,

^m&5
4

3

M

mK
S 12

mmK

2M D , ~2.15!

^m2&52S MmK
D 2S 12

mmK

M D . ~2.16!

Extracting the joint distribution forb andm from Eq. ~2.8!
in the same way, we also obtain the average values of the
energy and the square of the energy for highT. The average
energy is given by

^E&[^mcoshb&>
E
m1

m2
m4dmsinh2b coshbdbe2mcoshb/T

E
m1

m2
m3dmsinh2bdbe2mcoshb/T

.

~2.17!

Integrating outb, one finds

^E&>
1

4T

E
m1

m2
dmm4@K3~m/T!2K1~m/T!#

E
m1

m2
dmm2K1~m/T!

. ~2.18!

It is seen, with the help of Eq.~2.12!, that it is possible to
neglectK1 in comparison withK3 in the numerator of Eq.
~2.18! and obtain, via Eq.~2.12!,

^E&>
1

4T

E
m1

m2
dmm4K3~m/T!

E
m1

m2
dmm2K1~m/T!

.2T, ~2.19!

in agreement with Refs.@25–27#. Similarly, one obtains

^E2&[^m2cosh2b&>
E
m1

m2
m5dmsinh2bcosh2bdbe2mcoshb/T

E
m1

m2
m3dmsinh2bdbe2mcoshb/T

5

E
m1

m2
dm@m4K1~m/T!13Tm3K2~m/T!#

E
m1

m2
dmm2K1~m/T!

>3T

E
m1

m2
dmm3K2~m/T!

E
m1

m2
dmm2K1~m/T!

.6T2. ~2.20!
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Let us assume, as is generally done, that the ave
^pmpn& has the form

^pmpn&5aumun1bgmn, ~2.21!

whereum5(1,0) in the local rest frame. The values ofa and
b can then be calculated as follows: form5n50 one has
^(p0)2&5a2b, while contraction of Eq.~2.21! with gmn

gives 2gmn^pmpn&5a24b. The use of the expression
~2.20! for ^(p0)2&[^E2&, and Eq. ~2.16! for
2gmn^pmpn&[^m2& yields

H a2b56T2,

a24b52S MmK
D 2~12mmK /M !,

so that

a58T22
2

3 S MmK
D 2S 12

mmK

M D , ~2.22!

b52T22
2

3 S MmK
D 2S 12

mmK

M D . ~2.23!

For T@M /mK , it is possible to takea>8T2, b>2T2, and
obtain, therefore,

^pmpn&>8T2umun12T2gmn. ~2.24!

To find the expressions for the pressure and energy d
sity in our ensemble, we study the particle energ
momentum tensor defined by the relation@26#

Tmn~q!5(
i
E dt

pi
mpi

n

M /mK
d4„q2qi~t!…, ~2.25!

in which M /mK is the value around which the mass of t
bosons making up the ensemble is distributed, i.e., it co
sponds to the limiting mass-shell value when the inequa
~2.3! becomes equality. Upon integrating over a small sp
time volume nV and taking the ensemble average, E
~2.25! reduces to@26#

^Tmn&5
TnV

M /mK
n^pmpn&. ~2.26!

In this formula,TnV is the average passage interval int for
the events which pass through the small~typical! four vol-
umenV in the neighborhood of theR4 point. The four vol-
umenV is the smallest that can be considered a macro
ume in representing the ensemble. Using the stand
expression

^Tmn&5~p1r!umun1pgmn, ~2.27!

wherep andr are the particle pressure and energy dens
respectively, we obtain

p[p~m!5
TnV

p3

M

mK
A12

2mmK

M
T4, r53p.

~2.28!
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To interpret these results we calculate the particle numb
density per unit three-volume. The particle four current i
given by the formula@26#

Jm~q!5(
i
E dt

pi
m

M /mK
d4„q2qi~t!…, ~2.29!

which, upon integrating over a small space time volume an
taking the average, reduces to

^Jm&5
TnV

M /mK
n^pm&; ~2.30!

then

N0[^J0&5
TnV

M /mK
n^E&, ~2.31!

so that

N0[N0~m!5
TnV

p3

M

mK
A12

2mmK

M
T3, ~2.32!

and we recover the ideal gas law

p5N0T. ~2.33!

Since, in view of Eq.~2.4!,

2M

mK
A12

2mmK

M
5nm

is the width of the mass distribution around the valu
M /mK , Eqs.~2.28! and ~2.32! can be rewritten as

p5
TnVnm

2p3 T4, r5 3p,

N05
TnVnm

2p3 T3. ~2.34!

In Ref. @36# we obtained the formulas for thermodynamic
variables, under the assumption of narrow mass width, whi
depend onTnVnm as well; the requirement that these re
sults coincide with those of the usual on-shell theories im
plies the relation3

TnVnm52p. ~2.35!

One can understand this relation, up to a numerical factor,
terms of the uncertainty principle@rigorous in theL2(R4)
quantum theory# nE•nt*1/2. Since the time interval for
the particle to pass the volumenV ~this smallest macro-
scopic volume is bounded from below by the size of th
wave packets!, nt>E/Mnt, and the dispersion ofE due to
the mass distribution isnE;mnm/E, one obtains a lower
bound forTnVnm of order unity.

Thus, with Eq.~2.35! holding, the formulas~2.34! reduce
to

3In cgs units, this relation has a factor\/c2 on the right-hand side.
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p5
T4

p2 , r5 3p, ~2.36!

N05
T3

p2 , ~2.37!

which are the standard expressions for high temperature@37#.
The formulas for characteristic thermodynamic quantit
and the equation of state for a relativistic gas of off-sh
events have the same form as those of the relativistic ga
on-shell particles. They coincide with them@under the con-
dition ~2.35!# in the narrow mass-shell limit, except for th
expression for the average energy which takes the valueT
in the relativistic gas of events, in contrast to 3T, as for the
high-temperature limit of the usual theory@23#. Experimental
measurement of average energy at high temperature
therefore, affirm~or negate! the validity of the off-shell
theory. There seems to be no empirical evidence which
tinguishes between these results at the present time.
quantitys5M0c

2/kBT, a parameter which distinguishes th
relativistic regime from the nonrelativistic regime~see, e.g.
@25#,! is very large forM0 of the order of the pion mass, a
ordinary temperatures; the ultrarelativistic limit correspon
ing to s small becomes a reasonable approximation foT
*1012 K.

III. ANTIPARTICLES AND CONDENSATION

The introduction of antiparticles into the theory as t
CPT conjugate of negative energy events leads, by appl
tion of the arguments of Haber and Weldon@10#, or Actor
@38#, to a change in sign ofm in the distribution function for
antiparticles. We, therefore, write down the following rel
tion which represents the analogue of the formula~1.2!:4

N5V~4!(
km

F 1

e~E2m2mK m
2/2M !/T21

2
1

e~E1m2mK m
2/2M !/T21

G . ~3.1!

With respect to the determination of the sign of the seco
term, let us consider a space time picture in which we h
many world lines, generated by events moving monoto
cally in the positivet direction. The addition of a particle
antiparticle pair which annihilates corresponds to the ad
tion of a world line which is generated by an event initia
moving in the positive direction of time to some upper bou
t0, where annihilation takes place, and returning in the ne

4As for the nonrelativistic theory, the ‘‘free’’ distribution func
tions describe quasiparticles in a form which takes interactions
account entering through the chemical potential. By definition, g
quasiparticles are not frequently emitted or absorbed; we, there
consider the~quasi!particles and antiparticles as two species. Sin
the particle number is determined by the derivative of the free
ergy with respect to the chemical potential,m must change sign for
the antiparticles@10#. Similarly, the average mass~squared! is ob-
tained by the derivative with respect tomK @25#; since the mass
~squared! of the antiparticle is positive,mK does not change sign.
es
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tive direction of time. At times later thant0, the total particle
number is unaffected. At times earlier thant0, a particle and
an antiparticle are added to the total particle number. Sin
as also assumed by Haber and Weldon@10#, the total particle
number is a conserved quantity, the antiparticle traject
must be counted with a sign opposite to that of the parti
trajectory. The second term in Eq.~3.1!, counting antipar-
ticles must therefore carry a negative sign. We require t
bothnkm terms in Eq.~3.1! be positive definite. In this way,
we obtain the two quadratic inequalities,

m2m2mK

m2

2M
>0,

m1m2mK

m2

2M
>0, ~3.2!

which give the following relation representing the no
negativeness of the corresponding discriminants:

2
M

2mK
<m<

M

2mK
. ~3.3!

It then follows that we must consider the intersection of t
ranges of validity of the two inequalities~3.2!. Indeed, if
each inequality is treated separately, there would be so
values ofm for which one and not another would be phys
cally acceptable. One finds the bounds of this intersect
region by solving these inequalities, and obtains5

M

mK
S 12A12

2umumK

M D<m<
M

mK
S 11A12

2umumK

M D ,
~3.4!

which for smallumumK /M reduces, as in the no-antiparticl
case~2.5!, to

umu<m<
2M

mK
. ~3.5!

Replacing the summation in Eq.~3.1! by integration, we
obtain a formula for the number density:

n5
1

4p3E
m1

m2
m3dmE

2`

`

sinh2bdb

3F 1

e~mcoshb2m2mKm
2/2M !/T21

2
1

e~mcoshb1m2mKm
2/2M !/T21

G , ~3.6!

wherem1 andm2 are defined in Eq.~3.4!, which for large
T reduces, as above, to

n5
em/T2e2m/T

4p3 TE
m1

m2
dmm2K1SmT DemKm

2/2MT.

nto
od
ore,
ce
n-

5This is actually the solution of one of the inequalities~3.2! ~the
most restrictive!, depending on the sign ofm.
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Now, using the estimates~2.10! and ~2.11!, and
sinh(m/T)>m/T for m/T!1, we obtain @in place of Eq.
~2.13!# the net event charge

n5
1

p3 S MmK
D 2A12

2umumK

M
mT. ~3.7!

The pressure and energy density are obtained by the su
particle and antiparticle contributions@proportional to
exp(6m/T)], with the number density~3.7!. To second order
in (m/T)2, one finds

p52p~ umu!, r52r~ umu!,

wherep(m) and r(m) are given by Eq.~2.28! with m re-
placed byumu. On the other hand, from Eqs.~2.31! and~3.7!,
one finds

N052
TnV

p3

M

mK
A12

2umumK

M
mT2, ~3.8!

where the factor of 2m/T, as compared to Eq.~2.32!, arises
from thedifferencebetween the factors exp(6m/T) ~the sign
of m indicates whether particles or antiparticles predom
nate!. One then obtains the following expressions for t
Bose gas including both particles and antiparticles6 ~here,
nm is not necessarily small!:

p5
TnVnm

2p

2T4

p2 , r53p, ~3.9!

N05
TnVnm

2p

2T2

p2 m. ~3.10!

We now wish to show that the dynamical properties of
current, which follow from the relativistic canonical equ
tions of motion, are consistent with the thermodynamic re
tion

N05
N

V
, ~3.11!

whereN is the number of bosons in a three-dimensional b
of volumeV. Since the event-number densityn is, by defi-
nition,

n5
N

V~4! 5
N

Vnt
,

6If we did not neglect indistinguishability of bosons at high tem
perature, we would obtain, instead of Eq.~2.37! @36#,
N05 (T3/p2)Li 3(e

m/T), where Lin(z)[(s51
` zs/sn is the polyloga-

rithm @39#, so that, for the system including both particles and
tiparticles,N05(T3/p2)@Li3(e

m/T)2Li3(e
2m/T)#. It then follows

from the properties of the polylogarithms@39# that, for x[umu/T
!1, Li3(e

x)2Li3(e
2x)>(p2/3)x, so that, we would obtain, in-

stead of Eq.~3.10!, N05mT2/3, which coincides with Haber and
Weldon’s equation~1.5!.
of

i-
e

e
-
la-

ox

wherent is the ~average! extent of the ensemble along the
q0 axis @as in our discussion after Eq.~2.35!#, one has

N05nnt. ~3.12!

The equation of motion~1.9! for q0 @with M /mK , the central
value of the mass distribution, instead ofM , which corre-
sponds to a change of scale parameter in the expression~1.8!
for the generalized HamiltonianK],

dqi
0

dt
5

pi
0

M /mK
,

upon averaging over the whole ensemble, reduces to

nt

TnV
5

^E&
M /mK

, ~3.13!

whereTnV is the average passage interval int used in the
previous consideration. Then, in view of Eqs.~3.12! and
~3.13!, one obtains the Eq.~2.31!.

Since in the particle-antiparticle case,Nrel[N2N̄, where
N and N̄ are the numbers of particles and antiparticles, r
spectively, is a conserved quantity, according to the arg
ments of Haber and Weldon@10# pointed out in Sec. I, and
our discussion above,N05Nrel /V is also a conserved quan
tity, so that it makes sense to talk ofuNrelu bosons in a spatial
box of the volumeV. Therefore, in Eq.~3.10!, N0 is a con-
served quantity, so that, the dependence ofm on temperature
is defined by~we assume thatN0 is continuous at the phase
transition!

m5
2p

TnVnm

p2N0

2T2
. ~3.14!

For T above some critical temperature, one can alwa
find m satisfying Eq.~3.3! such that the relation~3.14! holds;
no suchm can be found forT below the critical temperature.
The value of the critical temperature is defined by puttin
umu5M /2mK in Eq. ~3.14!. In the narrow mass-shell limit,
inserting Eq.~2.35!, one obtains

Tc5pA uN0u
M /mK

. ~3.15!

For umu5M /2mK , the width of the mass distribution is zero
in view of Eq. ~3.4!, and hence the ensemble approaches
distribution sharply peaked at the mass-shell valueM /mK .
The fluctuationsdm5A^m2&2^m&2 also vanish. Indeed, as
follows from Eqs. ~2.15! and ~2.16! with m replaced by
umu, and Eqs.~3.14! and ~3.15!,

dm5
M

3mK
A22S TcT D 22S TcT D 4, ~3.16!

so that, atT5Tc , dm50. It follows from Eq.~3.16! that for
T in the vicinity of Tc (T>Tc),

-

n-



e

s

i
,

his
rac-

hin
al
that
m-
n-
ition
r in
ass.
ide
ual

le-
rep-

by
the
nsi-
be
e-
may
of
e

on-
und-
uc-
dy.
rse
-
-

by
dy-

ater
in
ner

be
m-

te to

ry
e-
os-
al

54 4037NEW RELATIVISTIC HIGH-TEMPERATURE BOSE- . . .
dm.
M

3mK
A 6

Tc
AT2Tc, ~3.17!

as for a second order phase transition, for which fluctuati
go to zero smoothly.

We note that Eq.~2.36! and Eq.~2.37! do not contain
explicit dependence on the chemical potential, and henc
phase transition is induced. In fact, at lower temperature~or
small mK), one or the other of the particle or antipartic
distribution dominates, and one returns to the case of
high temperature strongly interacting gas@40#. The remain-
ing phase transition is the usual low-temperature Bo
Einstein condensation discussed in the textbooks.

One sees, with the help of Eq.~3.4!, that the expression
for n ~3.7! can be rewritten as

n5
1

2p3

M

mK
nmmT; ~3.18!

since atT5Tc , nm50, it follows thatn50 at all tempera-
tures belowTc . Therefore, the behavior of an ultrarelativi
tic Bose gas including both particles and antiparticles, wh
is governed by the relation~3.14!, can be thought of as a
special type of Bose-Einstein condensation to a ground s
with pmpm52(M /mK)

2 @this ground state occurs with zer
weight in the integral~3.6!#. In such a formulation, every
state with temperatureT.Tc , given by Eq.~3.6!, should be
considered as anoff-shell excitation of the on-shell ground
state. AtT5Tc , all such excitations freeze out and the d
tribution becomes strongly peaked at a definite mass, i.e.
system undergoes a phase transition to the on-shell se
Note that, forn50, Eq. ~3.12! gives nt5`. Then, since
^E&;T, one obtains from Eq.~3.13! that TnV5` @this re-
lation can be also obtained from Eq.~2.35! for nm50],
which means that in the mean, all the events become
ticles.

As the distribution function enters the on-shell phase
T5Tc , the underlying off-shell theory describes fluctuatio
around the sharp mean mass. This phenomenon provid
mechanism, based on equilibrium statistical mechanics,
understanding how the general off-shell theory is constrai
to the neighborhood of a sharp universal mass shell for e
particle type. At temperatures belowTc , the results of the
theory for the main thermodynamic quantities coincide w
those of the usual on-shell theories.

In order that our considerations be valid, the relationTc
@M /mK must hold; this relation reduces, with Eq.~3.15!, to

uN0u@
1

p2 S MmK
D 3. ~3.19!

For M /mK;mp.140 MeV, this inequality yields
N0@33105 MeV3. TakingN0;53106 MeV3, which cor-
ons
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responds to temperature;350 MeV, in view of Eq.~2.37!,
one getsTc;550 MeV.4mp .

If mK is very small, it is difficult to satisfy Eq.~3.19! and
the possibility of such a phase transition may disappear. T
case corresponds, as noted above, to that of strong inte
tions and is discussed in a succeeding paper@40#.

IV. CONCLUDING REMARKS

We have considered the ideal relativistic Bose gas wit
the framework of a manifestly covariant relativistic statistic
mechanics, taking account antiparticles. We have shown
in such a particle-antiparticle system, at some critical te
peratureTc , a special type of relativistic Bose-Einstein co
densation sets in, which corresponds to a phase trans
from the sector of relativistic mass distributions to a secto
which the boson mass distribution peaks at a definite m
The results which can be computed from the latter coinc
with those obtained in a high-temperature limit of the us
on-shell relativistic theory.

The relativistic Bose-Einstein condensation in partic
antiparticle system considered in the present paper can
resent ~as for the Galilean limitc→` @36#! a possible
mechanism of acquiring a given sharp mass distribution
the particles of the system, as a phase transition between
corresponding sectors of the theory. Since this phase tra
tion can occur at an ultrarelativistic temperature, it might
relevant to cosmological models. The relativistic Bos
Einstein condensation considered in the present paper
also have properties which could be useful in the study
relativistic boson stars@41#. These and other aspects of th
theory are now under further investigation.

The extension and generalization of Bose-Einstein c
densation to curved spacetimes and spacetimes with bo
aries, for which the work reported here may have constr
tive application, have also been the subject of much stu
The nonrelativistic Bose gas in the Einstein-static unive
was treated in Ref.@1#. The generalization to relativistic sca
lar fields was given in Refs.@42,43#. The extension to higher
dimensional spheres was given in Ref.@44#. Bose-Einstein
condensation on hyperbolic manifolds@45#, and in the Taub
universe@46#, has also been considered. More recently,
calculating the high-temperature expansion of the thermo
namic potential when boundaries are present, Kirsten@47#
examined Bose-Einstein condensation in certain cases. L
work of Toms @48# showed how to interpret Bose-Einste
condensation in terms of symmetry breaking, in the man
of flat space time calculations@11,13#. The most recent study
by Leeet al. @49# showed how interacting scalar fields can
treated. Bose-Einstein condensation for self-interacting co
plex scalar fields was considered in Ref.@50#. It is to be
hoped that the techniques developed here can contribu
the development of this subject as well.
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