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The Rectilinear Crossing Number of a 
Complete Graph and Sylvester's "Four 

Point Problem" of Geometric Probability 

Edward R. Scheinerman and Herbert S. Wilf 

The chance of .. . the quadrilateral formed by joining four points, taken arbi- 
trarily within any assigned boundary, constituting a reentrant or convex quadri- 
lateral, will serve as types of the class of questions in view. 

J. J. Sylvester [11] 

We prove that two fundamental constants of the geometry of the plane are 
equal. 

First, if R is an open set in the plane with finite Lesbesque measure, let q(R) 
denote the probability that if four points are chosen independently uniformly at 
random in R, then their convex hull is a quadrilateral. Let qt be the infimum of 
q(R) over all such sets R. 

Second, let v(Kn) denote the rectilinear crossing number of the complete graph 
on n vertices, i.e., the minimum number of intersections in any drawing of Kn in 
the plane that has straight-line-segment edges. It is well known that v(Kn)/(4) 

increases steadily to some limit v* as n oo. 

Our main result is that q* = v*. 

FOUR RANDOM POINTS. Let R be an open set in the plane with finite area. As 
such, we can consider R to be a sample space from which we select points 
independently uniformly at random (i.u.a.r.). Choose four points from R i.u.a.r.. 
Then with probability 1, no three of the points are collinear, so the convex hull of 
the four points is either a triangle (one point in the convex hull of the other three) 
or a quadrilateral. J. J. Sylvester [11] asked, what is the probability that the points 
determine a convex quadrilateral? We denote this probability by q(R). 

How large and how small can q(R) be? When R is restricted to being a convex 
set we have the following result (see Blaschke [1, 2] and also [7]). 

Theorem 1. Let R be an open, convex subset of the plane, of finite area. 
Then 

2 35 
3 _ q(R) < 1- 12,7T2 0 704 

Further, both inequalities are sharp. The lower bound is attained by the interior of a 
triangle (any triangle), and the upper bound by the interior of an ellipse (any ellipse). 

This theorem, however, does not fully address the issue of the extreme values of 
q(R) because it considers only convex regions R. It is easy to see that if we relax 
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the convexity requirement, then the supremum of q(R) is 1; let R be a very thin 
open annulus and observe that we can make q(R) arbitrarily close to 1. Thus it 
remains to consider the infimum of q(R); let q* = inf q(R) where the infimum is 
over all open sets R with finite area. 

We show below that q* is positive and strictly less than 2/3 (the lowest possible 
result for convex R). We show further that q* is closely related to the rectilinear 
crossing number of complete graphs. 

RECTILINEAR CROSSING NUMBER OF A GRAIE>H. Let G be a graph which 
we wish to draw in the plane. If G is planar, then we can find an embedding in 
which the edges do not cross. A result of Fary [4] shows that we can choose this 
embedding so that the edges are noncrossing straight line segments. 

Let -v(G) denote the minimum number of crossings in a straight line drawing of 
G in the plane; the parameter v-(G) is known as the rectilinear crossing number of 
G. (For background on the rectilinear crossing number, see [6], [7] or [12].) 

An important open problem in the study of graph embeddings is to determine 
the rectilinear crossing number of the complete graph Kn. For n = 5, 6, 7, 8, 9 the 
values are known (see [12]) and they are 1, 3, 9, 19, 36 respectively. For n = 10 it is 
known [10] that 61 < v-(K10) < 62. 

If we place the n vertices of Kn on a circle, then the number of crossings is 
exactly (4); certainly we can do better, but v-(Kn) is on the order of n4 as we now 
explain. 

Theorem 2. There exists a constant ve such that O < ve < oo Mnd 

-(K ) v(Kn) 
v8= lim = sup 

( 4 ) n ( n ) 

(This is well-known folklore, but for completeness we show the proof here.) 

Proof: Let m < n and consider a straight line embedding of Kn in the plane with 
the minimum number of crossings, v-(Kn). For each m element subset A 
of V(Kn), let c(A) denote the number of crossings in this embedding inwhich the 
endpoints of the crossing edges are all in A. If we sum c(A) over all m-subsets of 
V(K), we count each possible crossing exactly ( n - 4 ) times. Thus 

V-(Kn) = E C(X)/(m-4) 

Now clearly c(A) 2 v-(Km), so it follows that 

v ( Kn ) 2 

(m - 4 

which we can rearrange to read 

v( Kn) v( Km) 

{nA {mA 
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Thus v(Kn)/(4) is a nondecreasing function of n which is bounded above by 1 and 

below by v(K5)/( 5 ) = 1/5. cz 

Since v(K10) > 61, we see that ve > 61/210 0.29. 

Singer [10] proves the following upper bound on the rectilinear crossing number 
of Kn when n is a power of 3: 

v(K ) < 1 (5n4-39n3 + 91n2 - 57n) 

Thus ve < 352 X 24 = 153 0.3846. 
(Jensen [6] gives a rectilinear embedding of Kn with 432n4 + O(n3) crossings, 

yielding an upper bound of 0.3888 . . . on v*.) 

MAIN RESULT Our main result is a simple relation between q*, the smallest 
probability of choosing a quadrilateral, and v*, the limit of >(Kn)/(4). 

Theorem 3. With the preceding notation, q* = v8. 

Proof: Let R be any open set in the plane with finite area. Choose n points 
P1 P2 * * * S Pn i.u.a.r. from R and let those n points be the vertices of a straight 
line drawing of Kn. Let c be the number of crossings in this drawing. Now c is a 
random variable whose value is always at least v(K"). Further, let 

X- E 1{ Pa { Pb Pc Pd form a quadrilateral} 
{aa b, cS d} 

where the sum is over all 4 element subsets of {l,...,n} and 1{...} is a 0,1 
indicator random variable whose value is 1 just when the convex hull of the four 
points Pan Pb PcS Pd iS a quadrilateral. Since the optimum drawing cannot have 
more crossings than the average, we get, by taking expectations, 

^(Kn) < E(ff)=(4)q(R) 

for aIl n. Dividing by (4) and letting n , we have a>* < q(R) for aII R. Thus 

ve < q*. 

For the opposite inequality, consider a straight line embedding of Kn with the 
minimum number, ̂ (K") of crossings. Let Re be the (disconnected) open set 
formed by placing a small open disc of radius e centered at each vertex of the 
embedding. See the cover of this issue. Here e is chosen small enough so that for 
every choice of n points one in each disc if we connect all pairs of them by 
straight line segments then the number of crossings is always equal to v(Kn), i.e.> 
all such embeddings are optimal. Clearly such an e exists. 

We now consider the following question: choose four distinct discs of R,E, and 
then choose i.u.a.r. a point from each of them. What is the probability q that the 
resulting quadrilateral is convex? 

On the one hand, q is the number of convex quadrilaterals in the original 
embedding divided by (4). But the former are in 1-1 correspondence with edge 

crossings, so there are exactly v(K) of themS and we have q = z(Kn)/(4). 
On the other hand, q(Re) is the probability that four points chosen i.u.a.r. in Re 

will form a convex quadrilateral. But four points so chosen will lie in four distinct 
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discs of Re with probability 1-O(l/n). Hence 

q = q(R>) + O(l/n) 2 q* + O(l/n). 

Combining these two facts about q we obtain 

q = V( Kn)/( 4 ) 2 q* + O(l/n) . 

If we now let n > oo, v* 2 q* follows, and the proof is complete. O 

Thus to summarize our principal results, we have 

61 5 
0.29 210 < q* = ve < l3 0.385. 

SOME COMMENTS 

1. In a spirit similar to ours, Moon [8] applies random methods in bounding 
the ordinary crossing number of Kn. He places n points i.u.a.r. on a sphere 
and joins them pairwise by arcs of great circles. This gives an upper bound 
of 8 ( 4 ) for the crossing number of Kn. It is not clear how to project Moon's 
embedding into the plane and have the edges become line segments. 

2. Our methods can be applied to arbitrary graphs G. Let M denote the 
number of pairs of edges in G which span four distinct vertices. Then 
v(G) < v*M/3; simply place the vertices of G i.u.a.r. in a region R and 
compute the expected number of crossings. 

3. Given a subset R of the plane together with a probability measure , 
defined on R, define q(R, ,u) to be the probability that four points chosen 
i.u.a.r. with respect to ,u form a convex 4uadrilateral. Without further 
restrictions, we see that the infimum of q(R,,) is 0; let R be a unit line 
segment together with Lebesgue measure no four points can form a 
quadrilateral. 

If we restrict ourselves to those (R,,) for which the probability that 
three points selected i.u.a.r. are collinear is 0, then the infimum of q(R, y) 
remains the same, namely q*. 

If we understand Sylvester's problem (see quote above) to mean the 
interior of a Jordan curve, our results still don't change; in the proof of 
Theorem 3 we can join the small open disks by even smaller tendrils so the 
domain is the interior of a simple closed curve. 

4. Let R be a bounded open set and embed the vertices of Kn at n points 
selected i.u.a.r. in R. We have seen that the expected number of crossings 
in this embedding is q(]R)(4). However, one might harbor hopes of doing 
better on occasion. It would seem natural to generate many embeddings of 
Kn in, say, the interior of a square or a disk, and count the number of 
crossings in hopes of finding a good embedding. Regrettably, this is not at 
all likely, as we now explain. 

The number of crossings can be written 

X = E 1{ Pas Pbs Pc Pd form a quadrilateral} 
{anb,c,d} 

where the sum is over all 4-element subsets of {1, . . ., n} and the piS are 
chosen i.u.a.r. in R. Thus X is an example of a U-statastic, see [5] or [9] for 
an extensive discussion. Using "deviations" results (see [9] §5.6) one can 
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Biographical historyn as taught in our pub- 
lic schools, is still largely a history of 
boneheads: ridiculous kings and queens, 
paranoid political leaders, compulsive voy- 
agers, ignorant generals-the flotsam and 
jetsam of historical currents. The men who 
radically altered history, the great scien- 
tists and mathematicians, are seldom men- 
tioned, if at all. 

Martin Gardner 
George F. Simmons, Calculuss Gems. 

New York: McGrasv Hill, Inc., 1992, p. 1 

show that the probability that the number of crossings is "significantly" less 
than the expectation is extremely small. 
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