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Resonant optical nanoantennas exhibit a different length scaling due to the surface plasmons
compared to their radio frequency counterparts. In this letter, we address this difference by
calculating the wavelength-dependent effective mode index neff for a cylindrical one-dimensional
gold nanowire waveguide. Our results show that nanorod optical antennas act as dispersive and
lossy Fabry–Pérot resonators for surface plasmons. © 2009 American Institute of Physics.
�doi:10.1063/1.3262947�

Optical antennas have been of great interest in the past
several years for numerous applications relying on the
large near-field enhancements they offer along with their
ability to confine electromagnetic radiation to subwavelength
dimensions.1–5 Radio frequency �rf� antennas are used for
transmitting and receiving radio signals and are impedance
matched to electronic circuits.6,7 On the contrary, their opti-
cal counterparts are of interest primarily for their localized
surface plasmon �SP� resonances originating from the
collective motion of the free electrons in metals.8,9 The SP
resonances of metallic nanoparticles can be utilized to bridge
the size gap, for efficient optical excitation, between a
diffraction-limited optical spot and a single fluorescent dye
molecule.10 In addition, the local density of photonic states is
also modified in the proximity of a nanoantenna resulting in
enhanced or quenched photoluminescence from a dipole
emitter.10,11

In the rf range, electromagnetic properties of metals can
be described by surface wave impedances since metals re-
flect rf waves almost perfectly.8 However, for optical fre-
quencies, the ratio of the metal’s skin depth to the free
space wavelength becomes significantly larger allowing for
strongly confined SP modes with effective indices larger than
that of the surrounding dielectric materials. Consequently,
their dipole resonances do not appear at multiples of half the
free space wavelength.3,5,8,12 Here, we show that these reso-
nances rather occur at integer multiples of half the effective
wavelength of the SP mode corresponding to Fabry–Pérot
modes of the nanoantenna resonator.

It has been experimentally shown that chemically syn-
thesized silver nanowires act as resonators for SPs.13 Gold
nanowires similarly exhibit such behavior.14 A typical Fabry–
Pérot spectrum of a 5 �m gold nanowire calculated numeri-
cally using a commercial finite integration technique code
�CST Microwave Studio� is shown in Fig. 1. The diameter of
the nanowire was chosen as 40 nm and the nanowire ends are
realistically rounded with a radius of curvature of 20 nm.
The nearfield enhancement spectrum was calculated at one of
the extremities of the nanowire that was illuminated by a

plane wave. Its polarization was tilted 15° with respect to the
nanowire axis in order to ensure that all the odd and even
modes are excited in the nanowire.

For shorter nanowire lengths, we expect to have reso-
nances that are spectrally farther apart in analogy to the
larger mode spacing in a shorter Fabry–Pérot cavity. Figure 2
shows the nearfield spectrum for a 500 nm long nanorod
antenna of 40 nm diameter with rounded ends. The three-
dimensional antenna problem is simulated using the finite
integration technique. In these simulations, for plane wave
illumination with polarization along the nanorod only the
odd antenna �� /2 and 3� /2� modes are excited whereas for
the 30°-tilted case, three dipolar resonances appear in the
spectrum including the first even ��� mode. This second
resonance cannot be excited with a plane wave for normal
incidence since this mode exhibits a charge distribution that
has the same sign at different antenna ends. In other words,
the overlap integral of this even mode and a plane wave
polarized along the antenna axis is zero. However, by tilting
the polarization with respect to the nanorod axis the radial
polarization component of the SP mode can be driven allow-
ing for finite coupling efficiency also into the second antenna
resonance.

In conventional Fabry–Pérot resonators, the quality fac-
tor of the resonances is limited by the reflectivity of the end
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FIG. 1. �Color online� A typical Fabry–Pérot resonance spectrum calculated
for a 5 �m long gold nanowire. The diameter of the nanowire is 40 nm. The
angle � between the plane wave polarization and the nanowire is 15°. Inset:
The schematic of the gold nanowire excitation.
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mirrors that make up the cavity. However, in this one-
dimensional plasmonic version of the nanorod antennas,
there are three different loss channels that affect the quality
factor. The first one is the radiative damping due to oscillat-
ing charges in the gold nanorod. The second one is the ma-
terial damping �Ohmic losses� due to absorption in gold at
optical frequencies as the SPs propagate in the resonator. The
third one is the reflection loss at the antenna ends yielding a
low finesse cavity reminiscent of mirror losses in standard
optical Fabry–Pérot cavities.

Another interesting feature of the optical nanorod anten-
nas is their unusual length scaling due to the SP dispersion.
For a typical dipole antenna of length L, the ratio L /� is 0.5,
1, and 1.5, respectively, for the first three resonances �where
� is the free space wavelength� while in our case it is 0.27,
0.52, and 0.71. To address this discrepancy, we numerically
calculated the effective one-dimensional mode refractive in-
dex for an infinitely long 40 nm diameter gold nanowire in
air as a function of �. The finite element method with experi-
mental values for optical constants of gold15 was used for
calculating the modes. This method allows us to solve nu-
merically for the waveguide modes of an infinitely long gold
nanowire by only inputting the two-dimensional cross sec-
tion of the nanowire in the transverse direction. We note that
this is very similar to calculating the transverse modes of a
cavity whereas the finite integration technique gives informa-
tion about the longitudinal modes of a resonator.

Figure 3 shows the real and imaginary parts of the cal-
culated wavelength dependent effective nanowire mode in-

dex neff. This TM like mode16 is confined to the nanowire
surface decaying exponentially away from the surface as
shown in the inset of Fig. 3. A small longitudinal electric
field component accompanies the large radially polarized
component similar to two-dimensional SPs on a metal
surface.16 Below 1 �m wavelength where fields can pen-
etrate significantly into the nanowire, the real part of neff
increases rapidly. The mode also becomes very lossy as the
wavelength approaches interband absorption in gold. By
contrast, at infrared frequencies the mode index changes
slowly with � indicative of less field penetration into the
metal. Consequently, fairly long propagation lengths can be
achieved for one-dimensional SPs at longer wavelengths due
to reduced material losses.

Having calculated neff, we can write the antenna reso-
nance condition as

m
�

2neff���
= L��� + 2���� , �1�

where m is an integer denoting the order of the resonance
and � is a measure of how much the field penetrates in
vacuum corresponding to the phase shift acquired upon re-
flection of the SP mode from the antenna ends. In other
words, � corresponds to the decay length of the displacement
current in vacuum increasing the effective antenna length.
We assume that � is comparable to the 1 /e decay length of
the one-dimensional SP mode in the radial direction.

We calculate the resonant antenna length L in Eq. �1� for
various wavelengths using values for � and neff from the
finite element method calculations. Figure 4 shows calcu-
lated values of L as a function of free space wavelength � for
the first three dipolar resonances. We compare these results
with our rigorous resonance calculations. In the finite inte-
gration technique simulations, we set the length of the an-
tenna and determine, by solving the full vector electromag-
netic problem, the resonance wavelengths that give the
maximum near-field enhancement at the antenna ends similar
to the simulation results shown in Fig. 2�a�. The calculated
near field enhancement peaks are also plotted for various
antenna lengths in Fig. 4 for comparison. There is good
agreement between the two approaches. Our findings show
linear dependence between the free space wavelength and the
antenna length for the first three orders. By making fits to

FIG. 2. �Color online� The calculated nearfield spectrum at the end of a
500 nm long gold nanorod for the normal and the 30°-tilted illuminations.

FIG. 3. �Color online� The real �blue squares� and the imaginary �red
circles� parts of the effective nanowire mode refractive index as a function
of wavelength. The nanowire diameter is chosen as 40 nm. The inset shows
the mode profile for the radial component at 750 nm wavelength.

FIG. 4. �Color online� First three resonant antenna lengths as a function of
illumination wavelength. The solid lines are calculated from Eq. �1� using
effective mode refractive indices. The discrete points correspond to resonant
wavelengths for fixed antenna lengths calculated with the finite integration
technique. Parameters for linear fits to the mode index calculations are also
listed for the first three resonances. These fit parameters are in nanometers
for both L and �.
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mode calculation results, we determined linear equations that
can be used to determine resonant antenna lengths for a
given wavelength and a resonance order as shown in Fig. 4.
These equations can be used as a guide for designing optical
antennas.

Another widely used antenna design utilizes two nano-
rods separated by a nanometric gap.4 In this case, similar
scaling with the antenna arm length is expected, however the
resonances will be redshifted from the single nanorod an-
tenna resonances due to the nearfield coupling between the
two arms of the antenna.

In summary, we show that nanorod optical antennas act
as one-dimensional Fabry–Pérot resonators for SPs. We also
address the different scaling of optical antennas compared to
their radio frequency counterparts by incorporating the
wavelength dependent SP mode index. These results will be
useful for future optical antenna designs that are important
for surface enhanced spectroscopies and light matter interac-
tion on the nanometer scale.
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