
Physica A 389 (2010) 1978–1985

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Improvement of signal-to-noise ratio by stochastic resonance in sigmoid
function threshold systems, demonstrated using a CMOS inverter
Michihito Ueda
Advanced Technology Research Laboratories, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

a r t i c l e i n f o

Article history:
Received 30 October 2009
Received in revised form 7 January 2010
Available online 2 February 2010

Keywords:
Stochastic resonance
Signal-to-noise ratio gain
Sigmoid function
Signal processor
CMOS inverter

a b s t r a c t

Stochastic resonance (SR) has become a well-known phenomenon that can enhance weak
periodic signals with the help of noise. SR is an interesting phenomenon when applied to
signal processing. Although it has been proven that SR does not always improve the signal-
to-noise ratio (SNR), in a strongly nonlinear system such as simple threshold system, SR
does in fact improve SNR for noisy pulsed signals at appropriate noise strength. However,
even in such cases,whennoise isweak, the SNR is degraded. Since the noise strength cannot
be known in advance, it is difficult to apply SR to real signal processing. In this paper, we
focused on the shape of the threshold at which SR did not degrade the SNR when noise
was weak. To achieve output change when noise was weak, we numerically analyzed a
sigmoid function threshold system.When the slope around the threshold was appropriate,
SNR did not degrade when noise was weak and instead was improved at suitable noise
strength. We also demonstrated SNR improvement for noisy pulsed voltages using a CMOS
inverter, a very common threshold device. The input–output property of a CMOS inverter
resembles the sigmoid function. By inputting the noisy signal voltage to a CMOS inverter,
we measured the input and output voltages and analyzed the SNRs. The results showed
that SNR was effectively improved over a wide range of noise strengths.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In nonlinear systems, in which output cannot be obtained if there is only a very weak periodic signal input, the input is
enhanced with the help of noise to allow it to be observed. This phenomenon, called stochastic resonance [1–9], is observed
in a very wide range of fields, such as circuits [10], biology [11,12] and nano-systems [13,14]. Stochastic resonance is also an
interesting phenomenon when applied to signal processing. There are numerous reports on how the properties of a signal-
to-noise ratio (SNR) change as a result of stochastic resonance. However, it has been proved that within the regime of the
validity of linear response theory, the ratio of the output SNR over the input SNR (SNR gain:SNRgain) cannot exceed unity for
a nonlinear system driven by a sinusoidal signal and Gaussian white noise [8]. This fact makes it difficult to apply stochastic
resonance to signal processing. Meanwhile, in recent years, as Makra [15], Casado-Pascual [16], and Duan et al. [17,18]
have reported, beyond regimes where linear response theory is applied, SNRgain can in fact exceed unity in non-dynamic
and dynamic systems. These reports prompted us to investigate the possibility of building a novel signal and information
processing system by applying stochastic resonance.
Simple threshold systems, the most basic system for analyzing stochastic resonance, have been widely examined using

fundamental electrical elements such as comparators.We have also investigated the theoretical analysis of simple threshold
systems [19,20]. Focusing on their stochastic characteristics, we applied stochastic comparators to circuits to estimate the
distance between vectors [21,22]. We have also successfully expressed cellular migration using these stochastic computing
systems [23].
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In this paper, we investigated how to improve SNRgain over a wide range of noise strengths, focusing on the shape of the
threshold. Stochastic resonance shows peak SNR when the noise strength is appropriate, whereas the SNR of the output
degrades at weak noise strengths. However, for actual signal processing, SNR should ideally be improved continuously from
weak noise levels. From this starting point, we examined whether the SNR of an inverter output can surpass the SNR of an
inverter input over a wide range from weak noise strength, focusing on the shape of threshold.
The article is organized as follows. In Section 2, we numerically analyze the fundamental responses of a simple threshold

system for a rectangular signal input. We also investigate the sigmoid function threshold system to observe how SNRgain
is improved. In Section 3, to examine SNR improvement of an actual noisy pulsed signal, analog signal processing is
experimented using a CMOS inverter. Section 4 gives our concluding remarks.

2. Numerical analysis

2.1. Simple threshold system

First, we investigate the performance of a simple threshold system using an equation model. The equation model of a
simple threshold system is described as follows.

Vin(t) = s(t)+ ξ(t) (1)

Vout(t) =
{
1 (if Vin > θ)
0 (otherwise) (2)

where s(t) is the original signal and θ is the threshold value. ξ(t) is the zero-mean additive Gaussian white noise with
autocorrelation 〈ξ(t)ξ(0)〉 = σ 2δ(t), and σ is the standard deviation of the noise. In this paper, we call Vin the input signal
and Vout the output signal. The original signal is a periodic rectangular signal as described below.

s(t) =
{
h (nT ≤ t < (n+ γ )T )
0 ((n+ γ )T ≤ t < (n+ 1)T ) (3)

where h is signal height, T is the period, n is the period number, and γ is the duty cycle ratio.
We computed the averaged power spectral density (PSD), from which we obtained the SNR. We used the most common

SNR definition, which is the ratio of signal power PS at signal frequency fs and the level of the background noise at identical
frequency PN . Here, we identified PN as the mean power around fs as follows.

PN =
1
0.6fs

[∫ 0.8fs

0.5fs
P(f )df +

∫ 1.5fs

1.2fs
P(f )df

]
. (4)

Here, P(f ) is the signal power at frequency f . From PS and PN , SNR can be calculated as follows.

SNR = PS/PN . (5)

Here, we term SNRin the SNR of the input signal and SNRout the SNR of the output signal. SNRgain is also defined as follows.

SNRgain = SNRout/SNRin. (6)

Hereinafter, the threshold value is normalized by signal height. We call it the effective threshold, θef , which is defined as
follows.

θef ≡ (θ − smin)/(smax − smin) (7)

where smax is the maximum signal value and smin is the minimum signal value. Signal height h = smax − smin. Here, as
smin = 0, Eq. (7) becomes

θef = θ/h. (8)

In this paper, we analyze the subthreshold case (θef > 1), under conditions where the input cannot reach the threshold
value when noise strength is zero. Here, we define the normalized standard deviation of noise as follows.

σn = σ/h. (9)

We examined the relation between the duty cycle and the SNRgain for n = 300. In Fig. 1, the analyzed SNRin and SNRout at
each noise strength are shown at several γ values. For all γ values, SNRin decreasesmonotonically as σn increases, but SNRout
peaks at the appropriate noise strength, which is the stochastic resonance. The degradation of SNRin is the smallest when
γ = 0.5, while SNRout shows a rather complicated response according to the γ value. Note that when γ is as small as 0.01,
SNRgain can exceed unity as shown in Fig. 1(d). SR with periodic pulse trains have been also reported for simple threshold
system [15,24] and for double well potential [25,26]. They showed that the SNR gain also exceeded unity. However, when
noise strength was weak, since the SNRout became zero, the SNR gain also became zero.
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(a) γ = 0.9. (b) γ = 0.5.

(c) γ = 0.1. (d) γ = 0.01.

Fig. 1. SNRin and SNRout as functions of σn for different duty cycles when θef = 1.1.

The similar results were also seen in our results. Even if γ = 0.01, SNRout ismuch smaller than SNRinwhen noise strength
is weak. Fig. 2(c) shows the waveforms of input and output signal for various σn values when γ = 0.01, which corresponds
to Fig. 1(d). Fig. 2(c) shows the case of σn = 0.3, the SNRout of which was approximately maximal. In this case, a very regular
output can be observed according to the input of the noisy pulsed signal. Meanwhile, when σn is smaller (Fig. 2(a) and (b)),
although the pulsed input signal becomes clear, the periodicity of the output degrades. When noise is weak, and the input
signal does not reach the simple threshold, there is no change in output signal. This is why SNRgain degrades in weak noise
regions.
Here, for the SR effect, a theory exists as considered in Refs. [24,27]. This theory applies to any nonlinearity. For simple

threshold system with the input of pulse trains, we compared the numerical results to the theoretical value and confirmed
that almost the same value was achieved though the PN was approximately calculated by Eq. (4).

2.2. Sigmoid function threshold system

How can we make SNRout larger than SNRin when σn is small? One answer is to apply a new threshold system so that
Vout changes even if σn = 0. The sigmoid function is one candidate. If a sigmoid function has an appropriate gradient, Vout
will change when Vin is lower than the threshold. Here, we define the threshold θs of the sigmoid function as the input value
when the output value is half of the output swing. The sigmoid threshold is expressed as follows.

Vout = 1/ [1+ exp{−α(Vin − θs)}] . (10)

For simplicity, in the following, we set θs = 0. Here, α determines the slope around the threshold. The input–output
properties for different α values are shown in Fig. 3. Using this sigmoid threshold, SNRin and SNRout are computed for α = 1,
10 and 100. The results are shown in Fig. 4. Here, since the values of SNRin for α = 10 and 100 were very similar to that
of SNRin for α = 1, these plots are omitted from Fig. 4. When α is as small as 1, SNRout has almost the same value as the
SNRin for the whole range of noise strength. This resembles a linear response. When α is as large as 100, the SNRout is much
larger than SNRin around σn = 0.3; however, the SNRout degrades with weak noise (σn < 0.2). This result resembles that of
a simple threshold system. When α = 10, the SNRout does not degrade for weak noise and SNRout is larger than SNRin over
the whole region of noise strength.
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(a) σn = 0.05. (b) σn = 0.1.

(c) σn = 0.3. (d) σn = 0.5.

Fig. 2. Input and output waveform for different noise strengths (γ = 0.01), which corresponds to Fig. 1(d).

Fig. 3. Input–output properties for sigmoid function threshold systems.

Fig. 4. SNRgain for the sigmoid function threshold system for different α values.

Suchnonlinearity as sigmoid function is called the smoothnonlinearity. Smoothnonlinearities have also been reported by
Chapeau-Blondeau et al. [6,28]. In the Ref. [6], sigmoidal nonlinear system is discussed against the sine wave input. When
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Fig. 5. Schematic view of experimental setup.

Table 1
Parameters for MOS transistors used in the experiment.

Name Value

Gate length 10µm
Gate width (PMOS) 20µm
Gate width (NMOS) 10µm
Gate oxide thickness 10nm
Vth(PMOS) −0.8 V
Vth(NMOS) 0.8 V
VSP 1.53V
VSN −1.77V

the nonlinearity is almost simple threshold, SNRout exhibits maximal value at appropriate noise strength and stochastic
resonance occurs. However, when the nonlinearity becomes smoother, the input is visible at the output in the absence of
the noise. When the system is smoother, SNRout becomes monotonically larger and become close to linear response, which
is the same as our result, though the input was pulse in our analysis.
As above, there is an appropriate range of α values. This means that the appropriate gradient of the slope around the

threshold improves the SNRout properties. This makes a difference in the small noise region and maintains SNRout at the
same level as SNRin. When α = 10, the sloping region around the threshold voltage functions so well that SNRout has nearly
the same value as SNRin when the noise is weak; and SNRout exceeds SNRin when σn is about 0.2 to 0.6. When α = 10, it
may seem that stochastic resonance is not occurring, since SNRout has no maximal peak at the appropriate noise strengths.
However, this behavior of SNRout can be understood as the superposition of two factors.When noise isweak, an almost linear
response helps keep SNRout at the same level as SNRin. This prevents degradation of SNRgain. When the noise is stronger,
stochastic resonance occurs due to threshold nonlinearity and a marked improvement of properties of SNRgain ≈ 10 is
realized. Thus, by using the shape of the slope around the threshold, it is possible to realize improvement of SNRgain over a
large range of noise strengths.

3. Experiment using a CMOS inverter

To apply stochastic resonance to noisy signal processing, we investigated the improvement of SNRgain using actual
devices. From the results for the previous section, the slope around the threshold was found to effectively improve the
SNRout. Accordingly, in this section, we investigate whether SNRgain exceeds unity with an actual device which has a slope
around the threshold. One of the most commonly used threshold devices is a complementary metal-oxide-semiconductor
(CMOS) inverter. In general, CMOS inverters are used for binary logic circuits and output two voltages: the ‘‘High’’ and ‘‘Low’’
states. However, since a CMOS inverter has a slope around its threshold, if an analog signal is input to a CMOS inverter, the
output gradually changes around the threshold. By making use of this property, we investigated whether a similar effect to
that of the sigmoid function could be achieved.
The analysiswas carried out by inputting a noisy pulsed signal to a CMOS inverter (Fig. 5). The parameters for theMOSFETs

used in the experiments are listed in Table 1. Vth(PMOS) is the threshold voltage of PMOS, and Vth(NMOS) is that of NMOS.
For convenience, the source voltages of p-channel MOSFET (PMOS) and n-channel MOSFET (NMOS), which comprise the
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Fig. 6. Vin − Vout properties of the CMOS inverter used for experiments. Its threshold is tuned to about 0.0 V.

Fig. 7. Measured waveform of the noisy signal and the inverter output (γ = 0.2, σn = 0.3, θef = 1.1).

CMOS inverter, are tuned such that the threshold voltage of the inverter (Vth(inv)) becomes zero volts: specifically, when the
voltage at the source electrode of PMOS (VSP ) is 1.53 V and that of NMOS (VSN ) is −1.77 V, Vth(inv) of 0.0 V is realized, as
shown in Fig. 6. From Fig. 6, it can be seen that Vout changes gradually around the threshold of the inverter.
We analyzed this system under conditions where the signal height= 1.0 V. From Eq. (7), since the threshold voltage of

the inverter is 0.0 V, smin is calculated to be−1.1 V to achieve θef = 1.1. Tomatch the equationmodel of the previous section,
the analysis is executed under conditions where the signal period is 1 s and the noise is applied at 1 ms intervals. The input
signal is prepared as numerical data by adding Gaussian noise to the pulsed signals (Fig. 5). According to this numerical
data, the input voltage signal is generated by a D/A board on a desktop computer. Simultaneously, input and output signals
are measured by an A/D board on a desktop computer and sampled at 1 ms intervals. Here, the D/A board resolution is
2.4 mV/digit and that of the A/D board is 0.5 mV/digit. Experimental analysis is executed for 300 periods, the same as for
the numerical analysis.
Fig. 7 shows the measured waveform of the noisy signal and the inverter output when γ = 0.2 and σn = 0.3. Although

the output waveform is inverted because of the function of the inverter circuit, very similar results to the equation model
were obtained (Fig. 2). Here, the SNR shows no change when the output is reversed, since the PSD is the same.
Fig. 8 shows the relationship between noise strength and SNRs in the CMOS inverter experiments. In this analysis, to

set γ = 0.01, the ‘‘high’’ state is set at 10 ms. Noise data are updated at 1 ms intervals. This result corresponds to that of
the sigmoid-threshold system shown in Fig. 4. SNRin shows very similar results to that of Fig. 4, which indicates that the
noisy signal has almost the same properties. SNRout agrees closely with the sigmoid-threshold system for α = 10. When
the noise is large (σn > 0.4), SNRout showsmuch higher values than those of SNRin due to the effect of stochastic resonance.
Moreover, when the noise is small (σn < 0.2), SNRout does not degrade, but holds its value at almost the same level as SNRin.
As a result, SNRin is larger than SNRout for almost the whole region of noise strength.
Using a CMOS inverter, we were able to obtain high SNRgain for a wider range of noise strengths. Numerous studies have

been made of MOS transistors, which support the high performance and stability of today’s LSIs. We clarified that when
a noisy pulse signal is input to a CMOS inverter, the SNRgain exceeds unity when noise is weak and is improved around
σn = 0.3. These are novel characteristics of noisy signal processing by a CMOS inverter.
One of the examples for practical analog signal processing is the electrocardiograph. Strong impulse is measured for each

heartbeat, fromwhichwe can know heart rate etc. In general, since the human body is high impedance, themeasured signal
is mixed with noises. To analyze the frequency of heartbeat from such a noisy signal, this CMOS inverter system will be
useful.
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Fig. 8. SNRin and SNRout for experiments using a CMOS inverter (γ = 0.01, θef = 1.1).

4. Conclusion

We examined the effect of processing a noisy pulse signal by a threshold system from the point of view of improving
SNR. Although SNRgain could not be improved for a noisy rectangular signal with a duty cycle of 0.5 using a simple threshold
system, when the duty cycle of the signal is small, SNRgain exceeded unity in appropriate noise strength. However, SNRgain
was lower than unity when noise was weak.
To improve this limitation,we investigated the sigmoid function threshold system. Due to the effect of the linear response

caused by the slope around the threshold, the SNRgain for weak noise was found to be improved. Moreover, at appropriate
noise strengths, the SNRgain was significantly improved due to the effect of stochastic resonance.
To investigate potential applications for analog signal processing, we examined SNR improvement using an actual

threshold device. Since the threshold properties resembled the sigmoid function, a CMOS inverter was applied to the
threshold device. Signal processing experiments were carried out by applying voltages to the CMOS inverter using a D/A
board. The results showed that SNR was effectively improved at appropriate noise strengths by stochastic resonance.
Meanwhile, when noise was weak, SNRout maintained the same level as SNRin. A CMOS inverter showed improved SNR over
a wide range of noise strengths in actual noisy signal processing. Since MOS transistors are ideal for large-scale integration,
this signal processing method is likely to have numerous benefits.
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