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ABSTRACT Microarray analysis has become increasingly complex due to the growing size of arrays and the inherent cross-
binding of targets. In this work, we explore the effects of matched and mismatched target species concentrations, temperature,
and the time of hybridization on sensing specificity in two-component systems. A finite element software is used to simulate the
diffusion of DNA through a microfluidic chamber to the sensing surface where hybridization of DNA is modeled using the
corresponding kinetic equation. Comparison between a single-component system, where only one target is allowed to bind to
a specific zone, and a two-component system, where more than one target can hybridize in a sensing zone, uncovers
significant kinetic disparities during the transitory state; however, at thermodynamic equilibrium a modified Langmuir isotherm
governs the bound amount of both species. The results presented suggest that it may be more appropriate to consider collective
rather than quasi-independent interaction of targets in multicomponent systems.

INTRODUCTION

Systemic approaches in genetic research, molecular diagnos-

tics, and pharmacogenetics motivate the need for multitarget

nucleic acid arrays with high sensitivity and selectivity.

Arrays are also needed in the clinical application of genetic

screening for the rapid identification of genetic disorders in

the presence of multiple genotypes and/or mutations (1,2).

Numerous statistical models have been created to evaluate

the hybridization of nucleic acid targets using end-point anal-

ysis (3,4). Additionally, several authors have proposed mech-

anistic models of single-component hybridization combining

mass transport of target and chemical interactions on the sur-

face of the array (5–9).

Several groups have been active in analyzing the kinetic

behavior of surface capture (10–13). Their efforts resulted in

an emerging consensus theoretical approach, which add-

resses the effects of three-dimensional and two-dimensional

(surface-bound) mass transport, and surface chemistry, i.e.,

probe interactions, probe density, and steric hindrances by

introducing efficient (or apparent) rate constants or more

complicated rate functional parameters. The important result

of these studies is in defining surface and solution boundary

conditions at which some of these effects may be neglected

in a kinetic model. It was found that at probe densities of

,1012/cm2, probe-probe interactions and molecular crowd-

ing effects are insignificant. However, all of these studies use

a single analyte case for building the models, which limits

their applicability in interpreting multicomponent microarray

data. Although Erickson et al. (12) looked at differences in

kinetic capture of point mutants and wild-type targets, these

cases were treated as separate capture experiments.

In this work, we explore the effects of target and mis-

matched species concentrations, temperature, and the time of

hybridization on sensing specificity in two-component sys-

tems. A finite element method is used to simulate the diffu-

sion of DNA through a microfluidic chamber to the sensing

surface where hybridization of DNA is modeled using the

corresponding chemical reaction equation assuming low

grafting density. The association rate constant for the 20-mer

sequences is obtained from experimental data for the perfect

match target, and is used along with a thermodynamic model

to determine dissociation rate constants at different temper-

atures. One system evaluated is a two-component solution

consisting of a wild-type 20-mer sequence and a single nu-

cleotide polymorphism (SNP) mismatch. Another scenario

evaluates the binding of the wild-type strand and a strand

which had a two- or three-basepair mismatch. Simulation

results and the solution to the two-component chemical

reaction equations were utilized to evaluate the time needed

to reach equilibrium. Additionally, the dynamics of a two-

component system versus those of a single-component sys-

tem are dissected and the impact on analysis is discussed.

Time to reach equilibrium is proposed as a useful metric to

quantitate kinetic competition effects. We show that time to

equilibrium is significantly elongated in competitive hybrid-

izations compared to single-component capture. This finding

challenges the validity of equilibrium assumptions by current

analysis approaches.

THEORY

Mathematical model: single species

Nucleic acid arrays employ affinity interactions between complementary

strands as the mechanism for sensing. Target which is delivered to the

sensing surface from solution via diffusion is interrogated by probes tethered

to the sensing surface. The delivery of analyte to the surface is governed by

Fick’s Law (neglecting the convection term),
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@C

@t
¼ D=

2
C; (1)

where C is the concentration of target in solution and D is the diffusion

coefficient for the target. The affinity interaction at the sensing zone, in the

case of a single species, can be expressed by

dB

dt
¼ kaCðRt � BÞ � kdB; (2)

where ka represents the association rate constant, kd is the dissociation rate

constant, Rt is the initial surface concentration of probes, and B is the surface

concentration of bound targets. The hybridization process in which target

can bind to or melt off the surface is controlled by both diffusion and the

chemical reaction at the surface. Both mass transport (diffusion) and reaction

kinetic equations are included in our model. At high concentrations (nM),

the mass transport contribution is insignificant compared to hybridization

kinetics, whereas at low concentration (pM), it becomes the dominant con-

tributor. Our diffusion-reaction model allows running virtual experiments

without making any prior assumptions with respect to the relative contri-

bution of each mechanism.

Eq. 2 can be solved for thermodynamic equilibrium by setting

ðdBÞ=dt ¼ 0; with the resulting Eq. 3:

B ¼ kaCRt

kaC1 kd
: (3)

Under the assumption of irreversible binding, kaC . . kd and C . Rt, the

equilibrium-bound concentration will be equal to Rt. When kd is comparable

to kaC, the bound concentration will be ,Rt.

For the simulation results described below, the association constant for

the wild-type sequence, CGCGGGCCGCATTAATAAAC, was taken to be

106 M�1 s�1, which was experimentally determined (14). Additional support

for the value of association rate constant used in our model comes from

studies of Erickson et al. (12), who demonstrated an association rate constant

on the same order of magnitude due to enhanced surface diffusion extracted

from experimental results (12). Similar values were used by Hagan and

Chakraborty (13) for theoretical studies of nucleation rates at the surface of

the sensor and also by Myszka et al. (14) on surface plasmon sensors

(13,15). It is assumed that the association constant does not change greatly,

more than an order of magnitude, over the temperature range used in our

simulations (16). To calculate an appropriate kd value for a specified tem-

perature we use a thermodynamic model as illustrated in Fig. 1. This model

is correct for solution-based hybridization. Although thermodynamic param-

eters for the surface-based reactions may be different (17–19), we use the

solution approximation to study functional dependencies, which should be

similar for solution and surface reactions.

Entropy (DS) and enthalpy (DH) values are calculated using MeltCalc

and we assumed that they did not change with temperature (T). These values
are then used to calculate DG, the standard free energy difference for

hybridized/melted duplexes,

DGðTÞ ¼ DH � ðDS � TÞ: (4)

Using

DG
y ¼ �logðkaÞRTo; (5)

the activation energy needed for hybridization was calculated using the

association constant and temperature, To, at 298 K. The standard free energy

and hybridization activation energy were used to calculate the dissociation

rate constant for specific temperatures,

kdðTÞ ¼ exp �DG
y 1DGðTÞ
RT

� �
: (6)

Different DNA sequences could have been chosen for this study, which

would have affected the values of the rate constants (20,21), and therefore

would have changed the absolute values of parameters investigated: tem-

perature dependencies, relative concentration effects, and times to reach

equilibrium. Such effects would be caused by increasing the length of the

strand or changing the sequence complexity. These changes could also

induce secondary structures, where there are multiple competitions among

the formation of different hybrids (intra- versus intermolecular) which are

not accounted for in our model. For these cases, calculations of thermo-

dynamic functions and, consequently, relative concentrations of different

species should be accomplished by using a statistical thermodynamic

approach, which was recently revised and updated by Dimitrov and Zuker

(22). Partition functions calculations may be accomplished by using

DINAMelt Server (23). However, as long as the ratios of apparent rate

constants and concentration are similar to those presented here, the trends

shown hold and the overall process of detection may be described in terms of

the time to the thermodynamic equilibrium. This model can equally be

applied to other multicomponent systems with different capture affinities:

small deletion, insertions, and truncations, for example.

Mathematical model: two species

The description of a system with two species (e.g., a perfect match and a

mismatch) that are mixed together, and allowed to bind to the surface, can be

described by a system of equations similar to those used for only a single

species. The model for the diffusion of both species is described by a system

of independent diffusion equations,

@C
m

@t
¼ D=2Cm

; (7)

@C
mis

@t
¼ D=

2
C

mis
; (8)

where Cm corresponds to the concentration of the perfectly matched target

and Cmis corresponds to the concentration of the mismatch. Equation 2, how-

ever, does getmodified to handle a system of two species. The equations have to

reflect the loss of available binding sites due to both the match and mismatch,

dB
m

dt
¼ kma C

mðRt � Bm � BmisÞ � kmd B
m
; (9)

dBmis

dt
¼ k

mis

a C
misðRt � B

m � B
misÞ � k

mis

d B
mis
; (10)

FIGURE 1 Representation of activation energies for the thermodynamic

model used to calculate the dissociation constants.

832 Bishop et al.

Biophysical Journal 90(3) 831–840



where Bm is the bound concentration by the match, and Bmis is the bound

concentration by the mismatch, with the corresponding association and dis-

sociation terms. The (Rt – Bm – Bmis) term represents the loss of probe sites

due to binding of both the match and mismatch targets, and therefore couples

the two equations.

The thermodynamic equilibrium solution to Eqs. 9 and 10 is more com-

plicated than its single-species partner. The modified Langmuir isotherm for

the match target, Eq. 11, shows the complexity of a multitarget solution.

Equation 11, assuming that kma C
m is much larger than kmis

a Cmis; simplifies to

Eq. 3. However, if kma C
m is comparable to kmis

a Cmis; we see that the amount

bound by the match is influenced largely by the bound mismatch. The

corresponding equation for bound mismatch is the same as Eq. 11, except all

the indexes mis and m terms are interchanged:

Bm ¼ Rtk
m

a C
m
k
mis

d

kma C
mkmis

d 1 kmis

a Cmiskmd 1 kmd k
mis

d

: (11)

Note that the equilibrium bound concentration of the matched target is a

function of association rate and dissociation rate ratios for matched and

mismatched targets.

Numerical model

Numerical simulations of an isolated spot on a microarray were performed

with FEMLab, a finite element package. The diffusion model within

FEMLab was applied to a two-dimensional channel. The channel was

1-mm-long and had a height of 100 mm, as shown in Fig. 2. The sensing

zone was described by a 200-mm surface centered on the bottom of the

channel. The channel mesh was no larger than 10 mm and around the sensing

zone the mesh was smaller than 0.1 mm. The location of the zone in the two-

dimensional channel was coupled to a one-dimensional structure using a flux

boundary condition. The one-dimensional structure used the diffusion model

to simulate the affinity reaction between the target and probe.

No target should be lost from the top of the channel, so that boundary was

set to an insulation (nonreactive) boundary. The bottom of the channel,

except where the sensing zone was located, was also set to an insulation

boundary. The two vertical walls on each end of the channel were set to a

continuous concentration boundary. This was done to simulate the unlimited

supply of target in a bulk sensor. In the case of a single target in solution, one

diffusion equation is used, but with two species, two diffusion equations had

to be solved. The corresponding boundary condition set the vertical walls to

the appropriate concentrations and the sensing zone to the corresponding

binding equation. The rate constants for association (106 M�1 s�1) and

dissociation (see Fig. 3) as well as the initial probe concentration (10�11

Mm) were entered as constants and used to solve for a time-dependent

solution. The low probe density was chosen to simulate conditions under

which the possible effects of electrostatic probe-probe interactions (24) and

steric hindrances during target-probe hybridization could be assumed neg-

ligible (12,25). Non-Langmuir binding, which may be a result of hetero-

geneity in binding energies in the sensing zone, has been observed for higher

submicromolar and micromolar target concentrations (26). These effects are

not accounted for in our model due to the low target concentrations in-

vestigated. The initial conditions used by the time-dependent solver were

Bm ¼ Bmis ¼ 0, and Cm and Cmis are equal to the concentration of

match/mismatch target in solution.

SIMULATION RESULTS

Temperature effects

We conducted simulations to investigate the effects of

temperature on hybridization kinetics for both single and two-

component systems. Under the assumptions of the theoret-

ical model, the association rate constants for matched and

mismatched targets are similar and their temperature depen-

dence in the interval under investigation (300–340 K) is

within one order of magnitude; therefore ka was set to a

constant over all ranges of temperatures and target species.

However, the dissociation constants are affected by tem-

perature significantly. The corresponding dissociation con-

stants for different temperatures are shown in Fig. 3 for

the match and multiple mismatch sequences ranging from

1 SNP to 3 SNPs: CGCGGGCTGCATTAATAAAC,
CGCGAGCCGCATTGATAAAC, and CGCGAGCCGCA
CTGATAAAC. Note that the dissociation constants for the

mismatch targets are always higher than those for the match

target, which reflects the greater instability of the heterodu-

plexes as compared to the homoduplex at the same tem-

perature.

Virtual experiments were performed using the two-

component model for temperatures shown in Fig. 3 to

FIGURE 2 Two-dimensional channel design with the boundary con-

ditions for each wall.

FIGURE 3 Dissociation rate constants at different temperatures for the

match (solid line), and a 3-, 2-, or 1-SNP mismatch target (dashed line).

A Competitive Kinetic Model of Nucleic Acid 833

Biophysical Journal 90(3) 831–840



represent binding in a 20-min period. Twenty-minute

binding simulations were chosen due to limitations of the

finite element package in handling dissociation at high tem-

peratures. The match/mismatch bound concentration ratios

are shown in Fig. 4. Simulations were performed using equal

concentrations, 100 pM, of input species. As the temperature

increases, 20 K from 320 K, the amount of the 1-SNP

mismatch target bound to the surface, within the simulated

20-min time span, decreases whereas the matched target

bound concentration increases, leading to the increase shown in

Fig. 4. This result demonstrates the effects the dissociation

rate constant has on binding kinetics and suggests that

a competitive binding mechanism is controlling the binding

rate of the perfectly matched target.

Single versus competitive hybridization

Hybridization curves for a match target simulated in a single-

component solution and match target simulated in a two-

component solution, containing equimolar amounts of 1

SNP, are shown in Fig. 5 A. In addition, Fig. 5 B shows

binding of a 1-SNP mismatch target in a single-component

system and a 1-SNP mismatch target in a two-component

system. The initial target concentration of both the match/

mismatch are set to 100 pM, the modeled temperature is

330 K, and simulations depict binding for 80 h. At this

temperature and hybridization time our results show that

there is insignificant difference between the binding of the

matched targets either in the absence or presence of mis-

matched species. However, there are considerable differ-

ences in the mismatch curves. The single-component

simulations show that the bound mismatch displays monoto-

nous growth over time. When both the matched and mis-

matched species are present we observe biphasic behavior

from the bound mismatch target, where initial growth is

followed by the drop-off of the bound mismatched species.

In an actual experimental setup, where a two-component

system is being used, the hybridization curves shown in Fig.

5 would not be observed. Instead, a composite hybridization

curve resulting from the superposition of the homoduplex

and heteroduplex would be seen. Fig. 6 A shows the example

of an apparent binding curve using the same input variables

as stated for Fig. 5. If we analyze the composite signal using

the assumption that mismatch binding is negligible, then the

corresponding results would be incorrect unless thermody-

namic equilibrium is reached before signal acquisition. Fig. 6

B shows the composite and match hybridization curves for

an experiment where the 1-SNP mismatch concentration is

10-times higher at 1 nm than the match concentration

(100 pM).

Nonspecific spots have been proposed as a means to help

quantify the amount of matched target that has bound to the

sensing surface. This is accomplished by subtracting the

signal from a nonspecific spot from the signal of the perfectly

matched spot. To simulate this technique, we allowed the 1

SNP from the match spot to have the same parameters for

a nonspecific spot. The results are shown in Fig. 7 A. Over
the first 20 h, there is no significant difference between the

actual match curve and the curve created by subtracting the

single mismatch from the composite curve (i.e., the false

match), but at longer time the difference becomes more

prominent. This scenario would be the best case where the

matched target has no affinity to the nonspecific spot. If the

match does have a non-zero affinity to the nonspecific zone,

then the amount of bound target to the nonspecific spot

would have to be modeled by the two-component model.

This has been completed simulating effects using the 1 SNP

from the match spot as the 1 SNP for the nonspecific spot and

the match target as a 2 SNP for the nonspecific spot with

results shown in Fig. 7 B. This result shows that there is

a major difference between the actual match and the one that

would be calculated even at short times. This result would be

even more exaggerated if the 1-SNP mismatch were at a

concentration 10-times higher than the perfectly matched tar-

get. Such a case would suggest that there was basically no

matched target in solution for times shorter than 10 h.

Time to thermodynamic equilibrium

Thermodynamic equilibrium can be defined as the point at

which the amount of a species bound to the surface does not

change with time or when there is equal probability that

a target will bind to or melt off the surface. Using Eq. 11, the

thermodynamic equilibrium bound surface concentration

was calculated for the matched target. This was then used to

find out how long it would take to reach equilibrium at the

temperature of 330 K, using varying relative combination of

concentrations of matched and mismatched species. Table 1

shows the results of the investigation. Note that the single-

component case is included as a reference. As the concen-

tration of both the match and 1-SNP mismatch increase, the
FIGURE 4 Ratio of bound concentration of match and 1-SNP mismatch

after 20 min of hybridization at different temperatures.
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time to completion decreases; however, if the concentration

of the mismatch increases while the concentration of the

match stays constant, the time to completion increases. The

long times needed to reach 90% of thermodynamic equi-

librium are not acceptable, unless experiments are done at con-

centrations that are higher than 1 nM concentration for both

match and mismatch targets.

Simulations of equal concentrations of targets are valuable

in understanding the mechanism of a hybridization exper-

iment but their relevance to real-life samples is questionable.

With this in mind we investigated what would happen if the

concentration of a 1-SNP mismatch target was higher than

that of the matched target. Hybridization curves are shown in

Fig. 8 for a 1:1, 2:1, 5:1, and 10:1 mismatch/match ratio. All

of the simulations were done at a temperature of 330 K, the

match concentration was set to 100 pM, and were run to

simulate 100 h of binding.

The curves shown in Fig. 8 highlight the fact that within

72 h the hybridization experiments have not reached equi-

librium, but more interesting is the dynamics of the binding.

The 10:1 ratio composite curve growth slows down over

short times after the initial jump, but over long hybridization

times is actually growing, and in fact the curve is mostly

composed of the bound mismatch until �30 h have elapsed.

Multiple basepair mismatch

To this point we have only considered the extreme case in

which the concentration of a SNP is comparable or higher

than the perfect match to be evaluated. However, relevant to

the discussion, the situation is less probable than a two- or

three-basepair mutation present at concentrations compara-

ble to that of the matched target. The addition of multiple

point mutations should change the association rate constant;

FIGURE 5 Hybridization curves simulating target concentrations at 100 pM at a temperature of 330 K. (A) Match targets simulated in single (dashed line)

and two-component (solid line) systems; and (B) mismatch targets simulated in single (dashed line) and two-component (solid line) systems.

FIGURE 6 Hybridization curves representing the composite curve (dashed line) and the actual match target curve for a single-component system (solid line)
at a temperature of 330 K. (A) For a setup with equal 100 pM concentration of match and mismatch. (B) For a setup where the match concentration is 100 pM

and mismatch concentration is 1 nm.
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however, the magnitude of the change has been suggested to

be within one order of magnitude for up to a five-basepair

mismatch (14). Simulations were run for a two-base mis-

match using equal concentration, 100 pM, of match

and mismatch target and association rate constants of 106,

5 3 105, and 105 M�1 s�1. Table 2 shows the dissociation

rate constant at a temperature of 330 K for each situation, the

bound concentration of match target, bound concentration of

mismatch target, and the ratio of bound match/mismatch

concentrations. The effects seen from changing the associ-

ation rate constant on the mismatch-bound concentration are

small, and the differences in the calculated dissociation con-

stants vary by less than half an order of magnitude.

Our earlier results in Table 1 show that, to reach thermo-

dynamic equilibrium using picomolar concentrations, ex-

periments would have to run for over 60 h. This time frame is

practically unreasonable. We have run simulations to find the

point at which the match target is accountable for 90% and

95% of the observed signal. The concentrations of the match

and mismatch were fixed at 100 pM while using different

numbers of point mutations and using an association con-

stant of 106. Fig. 9 shows that as the number of point muta-

tions grows, the time needed for the match to reach 90% and

95% of the combined signal decreases. This is attributed to

the elevated values of dissociation rate constants that accom-

pany the increased number of point mutations, 2 SNP kmis
d ¼

7:61310�4 s�1 and 3 SNP kmis
d ¼ 1:57310�2 s�1—i.e., as

the dissociation constant increases, the hybridized pair

becomes increasingly unstable. Note that if the concentration

of the mismatch is increased, the time to reach the 90% or

95% mark will also increase.

Dynamic range

Determining the dynamic range of sensing on arrays is an

issue that has plagued microarray designs. Controlling tem-

perature on the surface of arrays has recently been used as

a way to detect sequence mutations by virtue of changing the

dissociation rate constants. This mechanism seems to work

well as the temperature grows, but the actual dynamic range

between the match and mismatch targets decreases. As the

temperature is increased, the dissociation constants for match

and mismatch increase and converge. Fig. 10 shows the

dissociation constants’ ratios as a function of temperature. If

we assume that the concentrations of the match and mis-

match are the same and the association constants are similar,

then the ratio of dissociation constants defines the theoretical

dynamic range of sensing. The fact is that, at lower tem-

peratures, the dynamic range of match/mismatch discrimi-

nation is broader, but the dissociation constants are so small

the differences would not be detectable in a realistic time

frame.

Using the thermodynamic equilibrium equations for the

match target and the corresponding mismatch equation, one

can evaluate the theoretical limit of discrimination in

FIGURE 7 Hybridization curves representing the composite curve, actual match target curve, a nonspecific curve, and a false-match curve for simulations

performed at equal concentration of 100 pM at a temperature of 330 K. (A) Nonspecific, 1 SNP, simulated as a single component. (B) Nonspecific, simulated as

a two-component solution of 1 SNP and 2 SNP.

TABLE 1 Time to reach a percentage of

thermodynamic equilibrium

Match (pM)/mismatch

(pM)

Time 10%

(hours)

Time 50%

(hours)

Time 90%

(hours)

10:0 34.2 NA NA

10:10 34.4 NA NA

100:0 3.6 21.3 58

100:100 3.6 22.3 64.1

100:200 3.7 23.7 69.9

100:500 3.9 28.6 83.1

100:1000 4.3 35.7 98

1000:0 0.3 2.0 5.5

1000:1000 1.1 5.5 12.2

Time to reach 10%, 50%, and 90% of thermodynamic equilibrium for

different combinations of concentration for the match and mismatch targets.
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a two-component system. Fig. 11 shows the dynamic range

capable on a microarray spot as described by the ratio of

bound homoduplex concentration divided by heteroduplex

bound concentration at thermodynamic equilibrium,

B
m

B
mis ¼

k
m

a C
m
k
mis

d

k
mis

a C
mis
k
m

d

: (12)

As the ratio of dissociation rate constants becomes large,

simulating an increase in mutations or decrease in temper-

ature, the dynamic range of sensing increases. However, if

the concentration of the mismatch is larger than the matched

target concentration, the dynamic range decreases. These

data demonstrate that there is a point at which the concen-

tration of mismatch can be high enough that discrimination is

no longer plausible. Such a scenario could be created if the

combined nonspecifics in a solution had a much higher con-

centration or an apparent dissociation constant comparable

to the match target.

DISCUSSION

When the stationary no-flow technique is used on micro-

arrays, the delivery of target to the sensing surface is ac-

complished through diffusion. If the affinity reaction on the

surface of the array is faster than diffusion, diffusion will con-

trol the speed of the surface reaction at the longer times needed

to reach the thermodynamic equilibrium of the reaction. This

effect is more pronounced when low target concentrations

TABLE 2 Effects of varying association rate constants

Assoc. (M�1 s�1) Dissoc. (s�1) Match (Mm) Mismatch (Mm) Match/mismatch

1 3 106 7.41 3 10�4 2.70 3 10�13 1.61 3 10�13 1.67

5 3 105 4.05 3 10�4 2.71 3 10�13 1.43 3 10�13 1.89

1 3 105 9.39 3 10�5 2.71 3 10�13 9.53 3 10�14 2.84

Simulation results using different association rate constants for a two-basepair mismatch after simulation of hybridization for 60 min with initial target

concentrations of 100 pM.

FIGURE 8 Hybridization kinetics representing the match, mismatch, and composite curve. (A) Curves with a 1:1 ratio, (B) with a 2:1 ratio, (C) with a

5:1 ratio, and (D) with a 10:1 ratio.
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are interrogated. Several models have been created to probe

the characteristics of surface binding of DNA. However, the

models do not represent the array environment as a multi-

component solution. Instead, each target is allowed to enter

the system one at a time and targets are not allowed to mix. A

similar kinetic model has been suggested for multicompo-

nent systems assuming short time to equilibrium for

mismatches compared to matches (27). The model assumes

that the nonspecific component reaches a steady-state level

which does not change over long hybridization times. Al-

though these assumptions are correct for single-component

systems, we show that they may not be true for multicom-

ponent systems, due to competitive binding. Simulations of

binding in a two-component system where the concentration

of the match and mismatched target are approximately equal

have produced hybridization curves indicative of a compet-

itive mechanism of binding.

Under the assumptions of the competitive model, surface

reactions proceed in two phases. In the early phase, where

the amount of bound targets is much lower than the amount

of probes available, both matched and mismatched species

bind to the sensing surface independently. In the second

phase, when the amount of the bound hybrids is comparable

to the amount of free probes, the matched species gradually

displaces mismatched species from the surface due to higher

stability of the homoduplex. This higher stability (or higher

affinity) of the matched target is expressed as a significantly

lower value of dissociation rate constant compared to the

dissociation rate of mismatched species. This was proven

by modeling the simultaneous hybridization of both the

matched and mismatched targets. Additionally, results pre-

sented suggest that it may be more appropriate to consider

how groups of targets in a multicomponent solution interact

with possible binding sites and not as individual targets.

A recent publication from W. Knoll’s group dealt with

mass sensing in a two-component system containing wild-

type and mutant (truncated) targets in which they considered

the way all targets interact with available binding sites (28).

Using a similar theoretical model they were able to recon-

stitute a composite mass sensor signal generated by compet-

itive capture of both targets. However, they did not analyze

surface kinetics for each target individually.

One of the important questions raised in this work is: What

parameters control time-to-equilibrium during surface hy-

bridization for multicomponent systems? In the case of a

single-component system, time-to-equilibrium is defined by

the concentration of the target and association and disso-

ciation rate constants: the higher the values of these param-

eters, the shorter is the time to equilibrium. In the case of a

two-component system with competition, the dissociation

rate constant of the mismatch emerges as the dominant param-

eter. Relative concentrations of the species in solution also

FIGURE 9 Time needed for the match target to reach 90% and 95% of the

composite hybridization curve while in a two-component solution of 1-, 2-,

or 3-SNP mismatch. Concentrations were equal at 100 pM and dissociation

constant calculated at 330 K.

FIGURE 10 Dynamic range achievable at thermodynamic equilibrium

using different values of the dissociation constant ratios for a perfectly

matched target and a 1-SNP mismatch.

FIGURE 11 Dynamic range achievable at thermodynamic equilibrium

using different values of dissociation constant ratios and association constant

concentration ratios.
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affect the time to equilibrium: the higher the relative

concentration of the mismatch, the longer is the time to

equilibrium. We interpret this result using the competition

model: in the early times, mismatch is a dominant bound

species because it has a higher concentration; in the later

stages of reaction, the rate of mismatch displacement by the

match is dominated by the rate of mismatch dissociation.

Microarray analysis has become increasingly complex due

to the growing size of arrays and the inherent cross-binding

of targets. Several researchers have suggested that cross-

binding can be accounted for analytically, using probe sites

specifically designed to capture nonspecific targets (29–31).

This is done by subtracting the nonspecific signal from the

signal produced by the perfectly matched target. The non-

specific spot arrangement has been tested experimentally and

has frequently produced erratic results (19,26,29). One com-

mon feature, which allows us to explain the origins of these

discrepancies, is rooted in the equilibrium approximation,

where surface concentrations of targets follow Langmuir or

modified Langmuir isotherm (24,32,33). Researchers gener-

ally allow a microarray experiment to proceed for between

16 and 48 h at a time and at that point assume that the surface

reaction is complete. Our results suggest that at low concen-

trations, which were used for equilibrium analysis based on

the Affymetrix database, time-to-equilibrium may be on the

order of hundreds of hours, so an equilibrium approach to

analysis of microarray data should be used with caution.

Experimental study of hybridization kinetics in multicom-

ponent systems also indicates continuing growth of specific

target surface concentration after 72 h of hybridization, in

agreement with our theoretical predictions (27). Wu et al.

(32) have performed analysis of experimental results that

assumes negligible contribution of SNPs to cross-hybridiza-

tion. However, kinetic studies performed by Erickson et al.

(12) clearly indicate significant contribution of SNPs to the

target signal in the kinetic regime. The example of SNP,

analyzed in this study, represents a centrally positioned mis-

match. As was previously shown, surface-bound oligonu-

cleotides exhibit stronger dependence on themismatch position

than during solution hybridization (34). With less destabiliz-

ing mismatches, resulting in higher affinities of mismatched

species, competitive effects will be even more prominent.

Our competitive model, corroborating kinetic experimental

results, allows us to further understand why erratic results

have been produced by looking at kinetic curves during

hybridization.

CONCLUSION

Using a two-component model we have presented results

describing kinetic behaviors of matched and mismatched

targets at the sensing zone. Even though the model does not

simulate a complete array, the effects of competitive binding

would increase as the simulated size of the array increases.

Under common conditions of a microarray experiment we

have shown that low initial target concentrations require

longer times to reach thermodynamic equilibrium than are

usually allowed and therefore contribution of mismatched

targets to the observed signal may be significant. Moreover,

even minor variations in hybridization times may cause sig-

nificant shifts in match/mismatch ratio. We have presented

some mechanisms that could explain the inconclusive pub-

lished data concerning the use of mismatched sensing spots

to quantify the amount of nonspecific binding on the array.

Based on our virtual experiments it is plausible to suggest

that not only single nucleotide mismatches but multiple point

mutations may have significant affinity to the sensing zones,

thus altering quantitative assessments. Results shown here

indicate that if the mismatches in solution are at equal or

higher effective concentrations than the matched species,

then the use of nonspecific spots will produce errors. The

error produced will be directly dependent on the temperature

at which the experiment is done, the sequence to be inves-

tigated, and the design of the nonspecific spot. Further

simulations and experiments are needed to expand the

competitive model to real-size DNA arrays. However, even

the simple case presented here demonstrates capabilities of

the competitive model to explain complex dynamics of the

target capture and identify critical parameters of microarray

experiments.

Note added in proof : Another recent study (35) has also presented a com-

petitive model of DNA hybridization.
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