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We solve Einstein’s field equations coupled to relativistic hydrodynamics in full 3yeneral relativity to

evolve astrophysical systems characterized by strong gravitational fields. We model rotating, collapsing and
binary stars by idealized polytropic equations of state, with neutron stars as the main application. Our scheme
is based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the field equations. We assume adiabatic
flow, but allow for the formation of shocks. We determine the appearance of black holes by means of an
apparent horizon finder. We introduce several new techniques for integrating the coupled Einstein-
hydrodynamics system. For example, we choose our fluid variables so that they can be evolved without
employing an artificial atmosphere. We also demonstrate the utility of working in a rotating coordinate system
for some problems. We use rotating stars to experiment with several gauge choices for the lapse function and
shift vector, and find some choices to be superior to others. We demonstrate the ability of our code to follow
a rotating star that collapses from large radius to a black hole. Finally, we exploit rotating coordinates to evolve
a corotating binary neutron star system in a quasiequilibrium circular orbit for more than two orbital periods.
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[. INTRODUCTION are suitable for large binary separations for which relativistic
effects are sufficiently small and any internal structure can be
With the availability of unprecedented observational dataneglected 3]. At small binary separations, the most promis-
the physics of compact objects is entering a particularly exing technique for modeling the inspiral, coalescence and
citing phase. New instruments, including x-ray ametay  merger is numerical relativity.
satellites and neutrino observatories, are detecting signals Several other observed phenomena involving compact ob-
from highly relativistic events in regions of strong gravita- jects require numerical relativity for their modeling. One
tional fields around neutron stars and black holes. A nevsuch example is gamma ray bur¢RBS. While it is not
generation of gravitational wave interferometers is promisingyet known what the origin of GRBs is, the central source is
to open a completely new window for the observation ofalmost certainly a compact objep4]. Most scenarios in-
compact objects. The ground-based gravity wave observataolve a rotating black hole surrounded by a massive magne-
ries Laser Interferometric Gravitational Wave Observatorytized disk, formed by a supernova, or the coalescence of
(LIGO) and TAMA are already operational and are collectingbinary neutron starg5]. To confirm or refute any GRB sce-
data, GEO and VIRGO will be completed soon, and a spacenario requires numerical studies in full-3l relativistic mag-
based interferometer Laser Interferometer Space Antennaetohydrodynamics.
(LISA) is currently under design. Another astrophysical scenario requiring numerical treat-
Given the small signal-to-noise ratio in these new gravi-ment is the formation of supermassive black hg&sIBHs).
tational wave detectors, theoretical models of likely source®Among the scenarios proposed to explain SMBH formation
are needed for the positive identification of the signal as welkre the collapse of a relativistic cluster of collisionless mat-
as for its physical interpretatiofil]. One promising tech- ter, like a relativistic star clustdi6] or self-interacting dark
nique for the identification of signals in the noise output of matter halo[7], or the collapse of a supermassive i@y}
the detector is matched filtering, which requires accurate theDepending on the details of the collapse, SMBH formation
oretical gravitational wave templat€®]. The need for such may generate a strong gravitational wave signal in the fre-
templates has driven a surge of interest in developing reliablguency band of the proposed space-based laser interferom-
techniques capable of their construction. eter LISA. Understanding the SMBH formation route may
Compact binaries, i.e. binaries consisting of either blackshed key insight into structure and galaxy formation in the
holes or neutron stars, are among the most promising sourcearly universe.
of gravitational radiation. Much progress has been made in Solving the coupled Einstein field and hydrodynamics
refining post-Newtonian point-mass approximations. Thesequations is a challenging computational task, requiring the
simultaneous solution of a large number of coupled nonlinear
partial differential equations. In addition to all of the usual
*Present address: Department of Astronomy & NCSA, Universityproblems of numerical hydrodynamics—handling advection,

of Illinois at Urbana-Champaign, Urbana, IL 61801. shock discontinuities, etc.—one encounters the problems in-
"Present address: Department of Physics, University of lllinois aherent to numerical relativity. The latter include identifying a
Urbana-Champaign, Urbana, IL 61801. suitable formulation of Einstein’s field equations, enforcing a
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well-behaved coordinate system, and, if black holes ardrames as well as the outer boundaries. An extended study,
formed, dealing with spacetime singularities. including binary sequences up to the dynamically identified
The construction of self-consistent numerical solutions tannermost stable circular orb{tSCO), will be presented in a
the coupled equations of relativistic hydrodynamics andorthcoming papef30].
gravitation dates back to the pioneering work of May and This paper is organized as follows. Sections Il and Il
White in spherical symmetri@] (see alsd10] for a review.  describe our method of evolving the field and hydrodynamic
In one of the first attempts to perform numerical integrations2guations, respectively. Section IV summarizes the various
in three spatial dimensions, Wilson, Mathews, and Mar-92uge choices with which we experiment. Section V lists the
ronetti[11-13 (see[ 14,15 for later correctionstackled the dlagnostlcs used.to gauge the reliability of our S|mulat|ons.
binary neutron star problem. They simplified Einstein’s field S€ction VIl describes several tests of our algorithm. Section
equations by assuming that the spatial metric remains con?!!! applies our formalism to evolve nonrotating, uniformly
formally flat at all imes. Their implementation of relativistic rotating, and differentially rotating polytropes. Section IX
hydrodynamics was based on earlier work by Wil§as] sketcheg our.bmary_neutron star caIchanns. Our results are
and used upwind differencing to handle advection and artifiSummarized in Section X. Some details of our hydrodynamic
cial viscosity to capture shocks. The first fully self-consistenScheéme and the rotating frame formalism are presented in the
relativistic hydrodynamics code, which treats the gravita\PPendixes.
tional fields without approximation, was developed by Shi-
bata[17]. This code, based on earlier work by Shibata and Il. GRAVITATIONAL FIELD EVOLUTION
Nakamura[ 18], adopts a Van Leer hydrodynamics scheme
[19,20 and also employs artificial viscosity for shocks. This
code has been used in various astrophysical applications, in- We write the metric in the form
cluding the coalescence and merger of binary neutron stars C T
[21,22 and the stability of single, rotating neutron stg28— ds?= —a?dt*+ y;(dX +g'dy(dx+gldy), (1)
25]. In an alternative approach, Fosit al.[26] implemented wherea, A, and ¥ are the lapse, shift, and spatial metric,

a more accurate high-resolution shock-capturing technique t : . o :
solve the equations of relativistic hydrodynamics. This CodePespectwer. The extrinsic curvaturg; is defined by

has been used to study pulsations of relativistic Jtars (9= L) yii = — 2aK;; 2)
In this paper we report on the status and some astrophysi- I o

cal applications of our new 81 general relativistic hydro- where£ is the Lie derivative with respect {8'. We choose

dynamics code. Our code, based on the so-called Baumgartgeometrized units wittG=c=1 throughout, so Einstein’s
Shapiro-Shibata-Nakamura (BSSN  formulation  of  field equations are

Einstein's equation$18,28, has several novel features, in-

cluding an algorithm that does not require the addition of a G,,=87T,,. 3)
tenuous, pervasive atmosphere that is commonly used in Eu-

lerian hydrodynamical codes, both Newtonian and relativis\We use greek letters to denote spacetime indices, and latin
tic. This “no atmosphere” algorithm proves to be very robustletters for spatial indices. Using the above variables, the field
and eliminates many problems associated with the traditionaquations3) split into the usual 3-1 ADM equationg31].

A. Basic equations

atmospheric approadi29]. These consist of the Hamiltonian constraint
We treat 1D shocks, spherical dust collapse to black holes, i L2
and relativistic spherical equilibrium stars to demonstrate the R—K;;K" +K*=16mp, (4)

ability of our code to accurately evolve the coupled field and .

hydrodynamic equations in relativistic scenarios. We thenthe momentum constraint

use the evolution of stable and unstable uniformly rotating

polytropes as a testbed to determine which gauge conditions

are best pehaye(_j_ in the presence of strong—fie_ld mattel 4 the evolution equation fot;

sources with significant angular momentum. We introduce !

rotating coordmaﬁe sys_tems and show that these can y|.eId (0Kij— LgKij)=—DDja+ a{Rij—ZK”KHKK”

more accurate simulations of rotating objects than inertial

frames. We demonstrate the ability of our code to hold accu- —8m[S+3vi(p— sSH (6)

rately stable differentially rotating stars in equilibrium. We

also show that our code can follow the collapse of rapidlyin addition to Eq.(2). HereD, R;; andR are the covariant

differentially rotating stars reliably until an apparent horizonderivative operator, the three-dimensional Ricci tensor and

appears, by which time the equatorial radius has decreasede scalar curvature associated with. The matter source

from its initial value by more than a factor of ten. termsp, S andS;; are projections of the stress-energy tensor
We then turn to simulations of binary neutron stars. Wewith respect to the unit normal® on the time slice

adopt initial data describing corotating=1 polytropes in

D;KI-DK=87S, ®)

quasiequilibrium circular orbit, and evolve these data for pznanBT“B
over two orbital periods. In this paper we present results for
one particular binary and discuss the effect of corotating Si=—yian,3T“5 (7)
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mentum constraint residuat$ and M can be monitored as a
code test during numerical evolution calculations. In the

Since numerical implementations of the Arnowitt-Deser-BSSN formulation, we also monitor the new constraint

Misner (ADM) equations typically develop instabilities after
very short times, we use a reformulation of these equations
that is now often referred to as the BSSN formulation
[18,28. This reformulation consists of evolving the confor-

mally related metric}ij, the conformal exponend, the

0=g'=T'+7%. (18)
B. Boundary conditions

Like any other hyperbolic system, the Einstein field equa-

trace of the extrinsic curvaturk, the conformal traceless tions must be supplemented by initial conditions and bound-

extrinsic curvaturél;
tionsT' defined by

ijo

yi;=e*%y; (8)
KIJ: (A +37IJK) 9)
Ti= —';,'} : (10

where detf;;)=1 and tr@A;)=0. In terms of these vari-
ables, Eqgs(2) and (6) become

(0= Lp)yij=—2aA; (13)
1
(= Lpldp=—gaK (12)
. 1 _ o~
(0~ Lp)K=—"D;Dja+ §aK2+ aAjAl
+4ma(p+S) (13)
(3t_£ﬁ)'~°\ij =e "[-D;Dja+a(R;—87S))]""
+ a(K’A” - Z’A”“A:) (14)

and

o8 1= g;(2aR + L5y

A2
=P Bt 37 Blg— T8+ 3T B+ BT — 2R 9ja

2~
-2«

37 (15

K j—6AT ¢ T A+ 81y

(see[28] for the computation of the Lie derivatives.

and the conformal connection func- ary conditions to have a unique evolution. We adopt bound-

ary conditions that follow from the assumption of asymptotic
flatness, i.eg,5— 7.5. In the asymptotic domain, mono-
pole terms dominate in the longitudinal variables, o
«r 1. The transverse fields will be dominated by outgoing
gravitational waves, so;/Il mj e fi(t— r)r-! and ﬂ
ccgji(t—r)r- ! , Wheref;; anda;; are unknown functlons of
retarded tlme Note that ! is a special case of(t
—r)r 1, so thatg, 'y” , andAIJ all satisfy outgoing wave
boundary conditions. The appropriate boundary conditions
for K andT' depend on the gauge conditions used in the
interior.

C. Numerical implementation

We evolve Egs.(11)—(15) using an iterative Crank-
Nicholson scheme with one predictor step and two corrector
stepg 32]. In this algorithm a functiorfi with time derivative
f is updated from its valu€” at time stem to its valuef"*?*
at the next time step+1 a timeAT later. In the explicit
predictor step *f"*1=f"+ATf", where f" is computed
from quantities on time step, a “predicted” new value
Lfn+1 s found. In the following two corrector step$f"*?!
=fHAT(" /2 and  fPTI=30T = AT(EN
+2f"+1y/2, these predicted values are “corrected.” The final
value f"** converges quadratically iAT. AT is set by the
Courant factorC=AT/Ax, whereAx is the coordinate dis-
tance between adjacent grid points. We typically &e
=0.5. The code implementing this evolution scheme has
been discussed elsewhef28], so we will highlight here
only the new features of our code.

We enforce the algebraic constraints "iszicl and
tr('Aij)zo as described if33]. Also following [33], we re-
place the termzf‘ﬁ' in Eg. (15 with the analytically

equivalent— (y” + 1T ),BJ These changes have little effect

In terms of the BSSN variables, the constraint equationgn the evolutions described in this paper, but lead to signifi-

(4) and(5) become, respectively,

¢ 5¢> 5¢
e’_ e e
—A; A'J — —K?+27e%%p,

8 12
(16)

A 2 .
O=M'=Dj(eG¢A“)—§e6¢’D'K—87-re6‘/’S', (17

where S =

cant improvements when treating black holes by excision
boundary condition§33].

We use second order centered differencing for all spatial
derivatives in the field equations. We have not found it nec-
essary to use upwind differencing for any derivatives. We did
find, however, that the addition of some dissipation in the
evolution equation fokp increases the stability of the code.
This can be supplied by upwind differencing of the term
which advectsp along the shift, and we have confirmed that

"S While the two constraints are identically this will indeed improve the stability. However, we have cho-

zero for analyt|cal solutions, they vanish only approximatelysen instead to add the Hamiltonian constraint to the evolution
in numerical calculations. Thus, the Hamiltonian and mo-equation for¢, as follows
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1 THY.,=0. (25)

Following [17], these equations can be brought into the form

Here the parametary is set between 0.Q¢T and 0.0AT.
cyH is a diffusive term, with Courant condition giveB4]

by 2cyAT/(Ax)?<1, so makingcy proportional toAT is
necessary in order to avoid an instability at high resolutions.
It also provides dimensional consistency in Ef©). Using

Eq. (19 offers the advantage of significantly decreasing the
growth in the error of the Hamiltonian constraifsee Sec.

IX for an example of thig.We note that the above is similar _
to one of the modifications of BSSN suggested3f]. 2wh

dpatdi(pv')=0 (26)
de,+di(e,v)=0 (27)
(?thék‘F o"i(~5kvi) =— aee"sPYk—Wha'k-i-ASj,B?k

ae_4‘/’§i§-~ij 2ah(w?— pf)
Yt W

Ko

(28)
D. Implementation of boundary conditions

i ; where h=1+¢+P = 0gb¢ W= 0

As discussed in Sec. Il B, we use Sommerfeld boundary” ere oo ee(ﬁ /fo’_ P+=poal”e o Pg“‘f r G
conditions for most of the field variables. That is, the value=— (Po€) " aue®,  S=p,hu,, and v'=u'/u” is the
of a quantityf on the boundary at timeand distance from  3-velocity. The quantityw is determined by the normaliza-
tion conditionu”u,=—1, which can be written

the origin is
—Ar Te. 2
f(r,t)= f(r—Ar,t—AT), (20) w?=pZ+e tISS 1+ ——————| . (29
p.(web?lp )t
whereAT is the time step andr = ae” 2PAT. The perfect fluid given by Eq21) generates the following
For the functiond™ we have experimented with several source terms for the ADM equations:

boundary conditions. We find little sensit~i\_/ity to the condi- 3 6o
tion used; the best choice seems to be fiXih@t their initial p=hwe P (30)
values(zero, for most of the applications herén our evo- s
lutions, we use shift vectors designed to makE' small, S=e 'S (3D
and we achieve,I"' =0 to high accuracy in the outer regions e 64
of our grids. Therefore, fixing'' at the boundaries is consis- Si=wn SSit P - (32

tent with the constraints and our gauge choices.
We will only be considering systems where there is
Ill. RELATIVISTIC HYDRODYNAMICS vacuum everywhere outside the star or stars. Therefore, the
appropriate boundary condition on the matter flow is that no
material should be flowing into the grid through the outer
We describe the matter source of the Einstein equations dsoundaries.
a perfect fluid so that the stress-energy tensor can be written

A. Basic equations

TMVZ(P0+P06+ P)UMUV+ Pg;w- (21) B. Numerical implementation

We evolve the hydrodynamic variables using an iterative
Here po, €, P, andu, are the rest-mass density, specific Crank-Nicholson scheme. This scheme is slightly different
internal energy, pressure, and fluid four-velocity, respecfrom the one used to update the field variables. In the cor-
tively. We adopt d'-law equation of state rector steps, instead of weightirfd and 'f"** equally[i.e.
P=(I'—1)pge, (22 THMTI=f"+AT(0.5("+0.5f""1)], we make the evolu-
tion more implicit by setting 'T1f"" ="+ AT(0.4f"
wherel is a cqnstant_. For isentropic flow, this is equivalent+0_6ifn+1)_ This makes the code slightly more stable.
to the polytropic relation As is often done in hydrodynamics cod@$], the updat-
p— Kpr 23) ing of the fluid variables onto a new time step is divided into
0 two stepg“operator splitting”): the advection stefaccount-
ing for the advective terms on the left-hand sides of Egs.
(26)—(28)], and the source stefmccounting for the right-
hand sides of Eqgs(26)-(28)]. Each step of a Crank-
Nicholson update consists of applying first an advection sub-

wherex is a constant. In our simulations we encounter non
isentropic flow(due to shocks and hence we use E@R2).
The equations of motion follow from the continuity equa-

tion step and then a source substep. Our scheme for carrying out
V,(pou#)=0 (24) the advection substep is similar to the van Leer scheme, and
is discussed in detail in Appendix A. Since Eg6) has no
and the conservation of stress energy sourcesp, is completely updated after it is advected. Fol-
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lowing [29], we then use the updated, to complete the 1.1 . . .
updating ofe, andS,. It is shown in[29] that this gives
improved behavior in Newtonian simulations of binary poly- 105 | i
tropes.
) i
e . . . 1F / I r
C. Artificial viscosity Iy
x \ / (] / A /v 1\ W h
In order to accurately handle shocks, our code must allows _ veRg o v

L \ VBRIV I J
: : . ) : 0.95 ‘ \
heating to occur in the fluid. We therefore introduce an art|-\o°.’ TRV IR

ficial viscosity. This is done by adding viscous pressure &
terms to the total pressure. We have implemented two type: 0.9
of artificial viscosity: quadrati¢with corresponding pressure

Pouig and linear(with corresponding pressuf ;s). Shock

heating causes an increase in the local internal energy. Fol
lowing [17], we change Eq(27) to

08 : ' :
K 0 0.5 1 15 2
webly ) Povist PLuis /P

T .

ate*+ ai(e*vi) == (pof)_l+l/r(9k

(33 FIG. 1. Maximum rest mass densiby as a fraction of its initial
value pg; for the binary system shown in Fig. 19. Stellar radial
Shocks are handled primarily by means of the quadrati®scillations can be efficiently quenched by the proper use of linear
artificial viscosity. The quadratic viscous pressure we add isiscosity, as shown here. The solid line shows the evolution without

given by[17] linear artificial viscosity, while the dashed line shows the effect of
this dissipative term.
CouisA(dv)?  for sv <0,
is= . 34 i i -
Qis™ | otherwise, (34) dynamical behavior of the system. However, very small val

ues will propagate the round-off numerical error very quickly
where A is defined as el/(we®®/p,)T~! and &v every time a division by the density is performed. A problem
=24,0Ax. We have also implemented linear artificial vis- with the presence of this atmosphere is that as soon as the

cosity termg 37] that can be used to dissipate radial oscilla-fime evolution starts the material begins to fall onto the star,

tions triggered in stars by the truncation error associated witﬁre‘;}mg k?cc:jedtion shocks. Swes# al. [29] scr)]lved this H
finite differencing. The corresponding addition to the pres-°roPlem by adding a non-zero temperature to the atmosphere

sure is to restore some sort of equilibrium that would counterbal-
ance the infall. Also, in order to avoid the bow shocks gen-

—CLys\(T/n)p,Adv for su<0, erated in the atmosphere by two stars in circular orbital mo-

PLis= 0 otherwise (35  tion, these authors provide the atmosphere with initial

angular velocity. These are some of the typical problems

Linear viscosity can be used at the beginning of a run t resent in the traditional artificial atmosphere approach

drive the initial data to dynamical equilibrium and later ound in many Eulerian hydrodynamlcs schemes.
switched off. Figure 1 shows an example of how the radial In this paper we present a very simple algorithm that does

oscillations can be quenched by linear viscosity. For this par-nOt require the presence of atmospheric material. It consists

ticular example, theP_,,, was active only where the rest of two ingredients. The first is the use of the spatial compo-

mass density exceeded a particular threshold value, to forc'%gnmt;;f égﬁ;g};zgg]rni%giggﬂgfvtiga{g dﬁisor?zlr frl]a/igrcf)gz;-
this dissipative effect only deep inside the neutrons stars. The -

(smal) dissipated kinetic energy goes into thermal energy.veIOCIty spatial components used in most hydrodynamical

We typically use 0.5Cq,s<1.0. Linear artificial viscosity codes(see, for instancg17)). In the latter case, the Euler

is not used in the runs described below. equation is used to update the prp(,(u‘). Once this update
' is completed, the dynamical field is recovered by dividing

by the densityp,. Using S, as a variable, we avoid these
divisions. The only time when the variablé needs to be
Numerical work in Eulerian hydrodynamics, both New- calculated explicitly is when we need the three-velogity
tonian and relativistic, has typically required the presence othat appears in every advection term on the left-hand side of
a pervasive tenuous “atmosphere” that covers the computaEgs. (26)—(28). To avoid doing this calculation for very low
tional grid outside the stars. To our knowledge, most pubvaluesp,, we add the second ingredient: the introduction of
lished codes to date need to keep a minimum nonzero derkthreshold value, i, below which all the hydrodynamical
sity that is usually set to be several orders of magnituddields are set to vacuum valuée. p,=u'=v'=0). A typi-
smaller than the maximum stellar density. Such an atmoeal value forp, i, is 10’ times the maximum initial value
sphere has been necessary to prevent overflows arising froof p, .
dividing by density in cells devoid of matter. This artificial ~ However, as the time evolution progresses, a tenuous shell
atmosphere has to be small enough not to affect the truef material typically drifts away from the stars and creates

D. Non-atmospheric hydrodynamics
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regions of very low density outside our stars. If nothing spe- 0=—yll D;Dja+ azij;&ij +4ma(p+S). (40)
cial is done in these regions, small shocks will heat the low-

density matter to very high temperatures, creating large presrhis slicing condition has the advantages of controllig
sures and pressure gradients. These pressure gradients willdnd avoiding singularities. Unfortunately, it is a computa-
turn generate large velocities. Although the low-density retionally expensive gauge choice, since it involves solving an
gion has a negligible effect on our stars and spacetimes, #lliptic PDE every time step. Therefore, we also try a slicing
can cause the code to crash if velocities are allowed to bezondition which approximates maximal slicing, the so-called
come too large. Therefore, we impose a heating limit outside K -driver” (Kdr) proposed by Balakrishnat al. [39]. The

the star idea is to convert the elliptic equatigmaximal slicing into

. . a parabolic evolution equation
e,=min(e,,10p,) if p,<E€factorX Pamaxs (36)

dra=—€(K+cK), (47
wheree, oIS @ constant that is determined empirically for a
given physical scenario. We generally choose values betweaihere e and ¢ are positive constants. The equatiofK =
1072 and 10°8, where the larger values @, Were only ~ —CcK, corresponding to exponential decayHKnis the solu-
needed in simulations of collapsing stars with a strongfion of Eq.(41) ase—c. However, setting: at too large a
bounce. We note that this is similar to the technique used iiyalue in our code will produce a numerical instabili¢gee

[26], in which the polytropic equation of stat23) is applied  the discussion ofy, in Sec. Il C) Fortunately, this limitation
in the low-density region outside the star or stars. can be overcome. We are able to effectively evolve with

larger e by breaking up each time step into several substeps

and evolve Eq(41) using a smalleAT than that used by the

other variables. On each substep, we use the values of the
Since matter often diffuses outward, albeit in minutemetric on the destination time level, so the process is equiva-

quantities, from the surface of the g&rto the boundaries, |ent to solving the elliptic equatiod;K+cK=0 by relax-

we need to impose boundary conditions on the matter at thgtion, except that we do not carry the process to conver-

outer grid points. In algorithms where an artificial atmo- gence. Instead, we typically use 5 substeps per step, avith

sphere is present, it is crucial to choose boundary conditions:0.625 andc=0.1.

which do not lead to a continuous inflow from the boundary, An even less Computaﬂona”y expensi\/e |apse condition is

or to bad behavior in the atmosphere. By eliminating such amarmonic slicing(hm), which for vanishing shift reduces to
atmosphere, however, all reasonable boundary conditions

E. Boundary conditions

yield the same behavior so long as the boundaries are placed d(a ty ¥2)=0. (42)
far enough from the stés) that little matter ever reaches _ N o
them. We apply this condition unchanged for the vanishing and

We usually use an outflow boundary condition. For ex-Non-zero shift, and find that it often gives behavior similar to
ample, if thex coordinate of grid points is indexed by an that obtained by using the above two slicings.
integeri with i,;;<i<<ia this boundary condition at the _
outerx boundaryi =iy, IS implemented as B. Shift

We also experiment with different spatial gauge choices.

n+1_ n+1 (37) . e . - X
Pamax™ Pamax-1 The simplest admissible shift choice, which turns out to be
N+l on+l surprisingly good for collapsing star applications, is to keep
€emax— Exmax-1 (38 the shift “frozen” (fz) at its initial values
I — nl
Sh+1_ IHa%(—l if T':a%(—1>o (39) ﬁ (t) IB (0) (43)
™o otherwise. at each grid point.

We also try the approximate minimal distortigAMD )
We have experimented with other boundary conditions agauge introduced by Shibaf40]
well. We have tried fixingp,, e,, andS, at their initial

values. We have also tried simply copying the adjacent grid 5ijv23i+ E:Bkkj:‘]j , (44)

point onto the boundary with no outflow restrictiof@opy. 3T

These cor_lc_iitions produce _sim.ilar resullts to those of the OUt\ivhereVZ is the flat-space Laplacian and

flow condition for all applications, while being somewhat

less computationally expensive. 5 _ 4
Ji=16maS+2A;(a!—6a¢g’)+ §aK,i. (45)

IV. GAUGE CHOICES
This gauge condition was designed to approximate the Smarr
and York minimal distortion shift conditiofid1], which in

We experiment with several time slicing conditions. First,turn was constructed to minimize gauge-related time varia-
we try maximal slicing(mx), which enforceK = ¢;K=0: tion in the spatial metric. As Shibata points da4], the

A. Lapse
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AMD condition must be modifiedMAMD ) in the event of a C. Rotating frames
collapse in order to prevent a “blowing out” of coordinates

from the center, which manifests itself by a growth in the mentm conservation capability over inertial frames in many

proper 3-volume element, i.e. by growth i Of course,  gpyjications, such as the hydrodynamical evolution of bina-
there may exist many alternative gauges in whigfdoes  jes systems. In transforming from an inertial frame with

diverge as a star collapses to a black hole. However, as thceoordinates (—x—z) 0 a rotating frame with coordinates
computational grid will be “blown out” along with the co- XY, 9

ordinates, removing this divergence with our gauge choice i§t:X:¥,2) and constant angular frequen@y=(1e,, we apply
necessary if one wants to accurately evolve the central regiothe following relations

during the collapse. The blowing out can be controlled by —

preventing the radial component of the shift from becoming t=t

large and positive

Rotating coordinate frames possess superior angular mo-

[ x=xcogQt)—y sin(Qt)

Bamp for ¢.<(4/3) ¢y,
=1 i 46
IB ﬁIAMD - fﬁ,rAMD X_ OtherWise, ( )
r =2

y=xsin(Qt)+y cog Qt) (50)

whereSyp is the solution of Eq(44), ¢ is the value ofp  where the barred variables will represent quantities in the

at the coordinate origing.;= ¢.(t=0), and inertial frame in the remainder of this section. It is conve-
nient to compare variables in the two frames at an instant
f:< 3¢c 1 (47  =t=0 at which the two frames are aligned. At this instant,
2 1+ (r/R)* the line element transforms from
Bhin =X B /T (48) d&?=—(a—B'B)dt>+2B,dXdt+ y;dxXdx
to

whereR is a constant. This correction is only useful in con-
figurations with near spherical symmetry, so that the collapse P (T B (OB 4 (G P )
is nearly radial at the center. It is disabied for simulations of 45" =—{a—¥[B'+(QX1)'][B'+(QXr)]}dt
binary systems. T A (B VT A A A
Finally, we try approximating the “Gamma-freezing” T2y [ B+ (QXr)]dxdt+ ydxdx,
condition a{fizo using a “Gamma-driver,”(Gdr), which

o _ whereFE(x,y,z). From this equation, we see that the fol-
controlsT"' in the same way that thi€-driver controlskK o

lowing transformation rules apply at=t=0:

aB =k(o I+ 9. (49) w=

Here k and » are positive constants, and, as with the ’Bizﬁﬂﬁxf)i (51)
K-driver, we can effectively makk larger than would other-

wise be possible by breaking up each step into multiple sub- =

steps. This shift condition has been used successfully in i = Yij -

black hole evolution calculatiorgl2]. The Gamma-freezing
condition is closely related to minimal distortigand hence
approximate minimal distortionand it is hence not surpris-
ing that the modification46) must also be applied to the
Gamma-driver shift. Typical values for the Gamma-driver’s
parameters ar&=0.01 andn=0.2, using 10 substeps per
step.

We have also written an implementation of the full
Gamma freezing conditiong(I'=0). However, applying
this condition requires solving three coupled elliptic equa
tions each time stepsee Eg.(15)], and we have found
Gamma-freezing to be too computationally expensive to b
worth solving exactly.

For each of the above shift types, the shift is only
uniquely specified after its boundary conditions have been T RO
chosen. This is significant because, as we show in Sec. IV D, u'=u—=(2xr)u
the asymptotic behavior of the shift depends on whether we _
are in an inertial or a rotating coordinate frame. Ui = U (52)

Equation(51) provides the transformation rules for the initial
metric data from the inertial fram@vhere it is usually de-
rived) to the rotating frame. The only change is the addition
of a new term in the shift. At later times, vectors and tensors
in the two frames will also differ by a rotation. However, we
note that at all times there will be some inertial frame, related

to (t,x,y,z) by a rotation matrix, which has axes aligned
with the rotating frame and whose metric is related to that of
the rotating frame by Eq51). Using the coordinate trans-
“formations(50) we can derive the relation between all the
éields in both frames, for example,

ul=u’
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vi=pi— (O XF) B must come from a higher-order term, but, sifg%ewill be
very small, our simulations are insensitive to it. We use

wherev' is the fluid three-velocitw'=u'/u®. At t=t=0,
the components of any spatial tensor are unchanged under
this transformation, for example,

ﬁXocyr*:g, Byoc)(r*3, ,BZOCXyZIﬁY. (58)

The B condition is obtained by ignoring and solving(56)
W (53) subject to the lowest-order moment of thg e’ term in J;
e [see Eq(45)].
and equivalently fofT;; andK;; . The relation(53) implies ~ _ N9te that the coordinate-rotation component of a shift,
yli=%/1, since the inverse of a tensor is unique, so that wd2 X, is & homogeneous solution of E@4). It was elimi-
v nated in Eq(58) by assuming that the shift approaches zero

also findK" =K". To complete our introduction of rotating at infinity. When working in a rotating frame, this is not the
frames in general relativity, we refer the reader to Appendix Y. 9 9 '

B, where we show that the Newtonian limit of the relativistic ¢2S€. In such frames, the asymptotic form of the shifis
Euler equation with a shift vector of the form of E(1) Xr plusa piece which behaves like E(8), and the bound-
reduces to the familiar Newtonian form of the Euler equationary conditions must be set accordingly.

in rotating frames. In Appendix C, we show that the inte-

grands used to evaluaké, My, andJ in Egs.(63), (64), and V. DIAGNOSTICS
(65), respectively, remain unchanged when expressed in . )
terms of rotating frame variables. In order to gauge the accuracy of our simulations, we

Having transformed into a rotating frame, the field, lapse monitor the L2 norms of the violation in the constraint equa-
and shift evolution equations are the same as in the inertidions. These are the Hamiltonian constrati(16), the mo-
frame, and we evolve them in the same way. We are guarammentum constraintV' (17), and thel' constraint(18). We
teed to remain in the rotating frame so long as we set th@ormalize the Hamiltonian and momentum constraint viola-
shift boundary condition in such a way that thexr piece tion by their L2 norm by
of the shift remains.

2 5 2
Nhc= ‘ (2myFp)2+ (BB >+ 2R| + —'Ai,-Z\”)
D. Boundary conditions 8 8
We always choose initial data which satisfy maximal slic- >\ vz
ing (40) and gauge choices which approximately maintain K ) } (59)
this slicing. Far from the source, Eq40) becomes the 2
Laplace equation, and its solution can be written as a sum
multipole moment fields. In the presence of matter, the
source will always have a nonzero monopole moment, so the 2 2
asymptotic form of the lapse is Nyc= H [(3773i)2+ §”|ji|<>
=1
a—Tlor 1, (54) s
All of our spatial gauge choices resemble one another, so +[¢_6Dj(¢6A”)]2H (60)
we will just derive the shift boundary condition for the AMD 2
shift (44), which is the easiest. The three components of Eq. ) - ) S
(44) can be decoupled by decomposiggas in[40] The two terms in thd" constraint(18) often vanish individu-
ally, so that a similar normalization is not meaningful for this
i s ‘ constraint.
B'=46 gpi - g( 7,i+ Piix) |, (55 Related to the Hamiltonian and momentum constraints are

mass and angular momentum conservation. In Cartesian co-
wherex® are the Cartesian coordinates. Equatidd) then  ordinates, the ADM masbl and the angular momentudi
becomes are defined by the behavior of the metric on a closed surface
at asymptotically flat spatial infinity
V2P;=J; (56)

V2y=—3x M= [ Y™ - @S (6D
n=—JX. (57) 167 ), YY Y (Ymnji™ Yinm

To lowest orderJ;=pv'. We will be studying systems with

zizimuthal velocity fields, for V\{hichzzzo, and hencepn Jizisﬁf xIKMd2S,,. (62)
=P,=0. The lowest nonvanishing moment &f, from the 8 o

monopole piece op, is =1, m==*1. We can solve the

Laplace equatioffioutside the starassuming asymptotic flat- Since Eq.(62) is computed at spatial infinit)f;ikj is the flat-
ness to get the boundary conditiog&ocyr=3, gYocxr—3, space Levi-Civita tensor. Using Gauss’s law, we transform
and, to this orderg*=0. A nonzero boundary condition for the surface integrals into volume integrals
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FIG. 2. This diagram shows how our code implememtsym-
(see, for example, Appendix A [183] for a derivation. Note  metry in distributed-memory computer clusters. The black circles
that sinces!‘j is outside the integral, it is still the flat-space correspond to grid points, and the bottom row corresponds to the
Levi-Civita tensor. Baryon conservatiorpdu”).,=0 im- boundary in the plane orthogonal to the rotation axis. The white
plies that the rest mass circles represent the ghost zones needed by our second order finite
difference stencil. The arrow connects two points that are related in
the presence ofr symmetry.
Mo= [ p.a% (69
struct initial data or to impose elliptic gauge conditipnse
is also conserved. Due to the finite differencing in our hy-yse the computational toolkit PET$47].
drodynamic scheméM is conserved identically except for  Due to our large number of variables, the memory needed
matter flow off the computational grid. We therefore monitor by our code is considerabldor example, a run with 64
Mo only as a diagnostic of how much matter flows throughspatial zones may require up to 2 Gbytes of memoFus,
the outer boundaries. itis crucial that we exploit any symmetries present in a given
Equations.(63) and (64) are only valid in asymptotically problem to minimize the number of grid points needed. We
flat spatial hypersurfaces and thus are not suited for use iRave implemented reflection symmetry across a coordinate
rotating reference frames. However, the problem can be Sid?)iane(equatorim symmetbyand reflection symmetry across
stepped quite easily by calculating the mass and angular mehree coordinate planésctant symmetry which cut the size
mentum in the inertial frame, as functions of the dynamicalof our grids by factors of two and eight. Our code also allows
variables of the rotating frame. In Appendix C we show thatys to enforcer symmetry, which assumes symmetry under a
the integrals for these conserved quantities are exactly thgtation of 7 radians about a given axis. Unlike equatorial
same when eXpI’eSSEd in terms of the rotating frame ﬁelds.and octant Symmetry, the imp'ementationmfsymmetry is
Another useful quantity to monitor is the circulation. Ac- not trivial on distributed-memory parallel systems. This is
cording to the Kelvin-Helmholtz theoref#3], the relativis-  pecause grid points needed to generate the proper boundary
tic circulation conditions at a given location of the outer grid boundary will
usually be located in the memory of a different processor, as
c(c)= § hu,\“do (66)  seen in the diagram of Fig. 2 where the value of the field at
c the white circle needed by poift in processor 4 must be
provided by a black circle on processor number 3. We fix
is conserved in isentropic flow along an arbitrary closedhis problem by creating a two-dimensional array for each
curvec when evaluated on hypersurfaces of constant propefie|d that stores the values of the field on all the grid points
time. Hereh=1+¢+P/p is the specific enthalpyy is @  outside the boundargwhite circles needed to calculate the
parameter which labels points an andA* is the tangent derivatives of the field at the grid points at the boundaries
vector to the curve. SinceC(c) is only conserved for isen-  (first row of black points Each processor is responsible for
tropic ﬂOW, Checking conservation of circulation along a few updating the array values Corresponding to gnd points within
curves will measure the importance of numerical and artlfljts domain by ar-radian rotation. Updated values are broad-
cial ViSCOSity on an evolution. We do not monitor circulation cast via MPI, and each processor has a copy of the Comp|ete
in this paper, although such a check has been implementag,o-dimensional array from which to draw the correspond-

elsewher¢44]. _ ~ing boundary values.
Finally, we check for the existence of apparent horizons

using the apparent horizon finder described48].
VIl. TESTS

VI. NUMERICAL CODE DESCRIPTION A. Vacuum code tests
All our algorithms have been implemented in a parallel, The algorithm for evolving the field equations was first
distributed-memory environment usimgpGH software[46]  tested in the context of small amplitude gravitational waves

developed as part of the Binary Black Hole Grand Challeng¢28]. With harmonic slicing, the system could be accurately
Alliance. When we need to solve elliptic equatiaite con-  evolved for over 100 light crossing times without any sign of
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FIG. 4. The evolution of the conformal exponent at the origin
¢. and the ADM masaM during Oppenheimer-Snyder collapse.
The deviation of, from its analytic valuep2™ is measured by
Ape=(de— ¢/ ( P+ $2"¥). This is plotted on the top panel. On
the bottom panel, we plot the ADM mass of the system and the

. - irreducible mass of black hole, given by the area of the apparent
instability. The results also showed second-order convemorizon. We compare runs at two different resolutions.

gence to the analytic solution when resolution was increased.
It has also been demonstrat2B] that this same code can
stably evolve isolated black holes, with and without rotation
in Kerr-Schild coordinates.

FIG. 3. The one-dimensional relativistic Riemann shock tube
test. We plot the numerical rest densjiy (triangles, pressureP
(squarey and velocityv (crossegsatt=0.5. Solid curves show the
analytic values. This particular run us€g)is=1.

tation of artificial viscosity schemes, and points to the need
'for more sophisticated high-resolution-shock-capturing tech-
nigues when strong shocks are pregset, e.g.,26]). How-
ever, for many of our astrophysical applicatidiesg. binary
inspira) we anticipate at most very weak shocks, so that the
Next, it was demonstrated that this field evolution schemaise of artificial viscosity schemes is adequate.
is stable when predetermined matter sources are pr&gint Our results are completely insensitive @,,;s when it is
This was done by inserting the matter sources from knowmwithin the range 0-0.1. We find the optimal behavior around
solutions of the Einstein equations and then evolving theCquis=1, at which point the effects of artificial viscosity are
gravitational field equations. Using this “hydro-without- small but noticeable. FA&Cq,is~5 or greater, the viscosity is
hydro” approach[48] evolved the Oppenheimer-Volkoff so- too large, and we are unable to evolve accurately.
lution for static stars without encountering any instability, ~Note that in the above exampje,>10"2p, 1 €Very-
and the Oppenheimer-Snyder solution for collapse of homowhere, soe,-limiting (36) is never used. More extreme
geneous dust spheres well past horizon formation. The sanshocks can be created by increasing the density yaff&
hydro-without-hydro approach was later used to model the>0)/py(x<0). We find that we can treat shocks reasonably
quasi-equilibrium inspiral of binary neutron star systems andaccurately for ratios of up to about 20.
calculate the complete late-inspiral gravitational wavetrain

outside the 1SC(049,50. D. Oppenheimer-Snyder dust collapse

As a second simulation which can be tested against exact
results, we model the Oppenheimer-Sny@@§) collapse of

Every hydrodynamic algorithm must demonstrate somea homogeneous dust sphere to a black fB88 The analytic
ability to handle shocks. In Fig. 3, we compare the output ofsolution for OS collapse can be transformed into maximal
our code for a simple one-dimensional shock tube problenslicing and isotropic coordinates followiri{§4]. We use the
with the exact result, which is known analytically in special analytic solution at=0, when the matter is at rest, as initial
relativity [51]. In order to compare with this result, the met- data for all variables. We then evolve the gravitational and
ric functions are held at their Minkowski values throughouthydrodynamic fields with our 31 code and compare the
this test. Att=0, we sev=v*=0 everywhere. Fox<0 we  result with the exact solution. At each time step, we deter-
setpy=15, P=225 initially, and forx>0 we setpy=1, P mine the lapse by solving the maximal slicing condition from
=1. We output data at=0.5. In Figure 1, we use artificial the fields on our 3D grid. For the shift we insert the analytic
viscosity parameter€q,is=1, C,is=0 (see Sec. lll and  values corresponding to isotropic coordinates. We evolve on
a grid with 400 points. The shock is resolved quite well, anda 32 grid and a 62 grid, utilizing octant symmetry to treat
the only disturbing feature of our results is the “overshoot” only the upper octant. Our outer boundaries are placed/at 4
in variables at the rarefaction wave. Norman and Winklerin the isotropic coordinates of our grid. The initial Schwarzs-
[52] have shown that these overshoots are present in thehild radius of the dust sphere i$i3
solution to the finite difference equations of artificial viscos- In Fig. 4 we show the convergence of the central confor-
ity schemes even in the limit of the grid spacing going tomal exponentp to the exact value. In Fig. 5 we compare the
zero. This problem therefore represents a fundamental limidensity profiles at several times for the36grid to their

B. Hydro-without-hydro approach

C. Shock tube
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FIG. 5. The density, defined by E() as a function of isotropic

radius during Oppenheimer-Snyder collapse. We compare our ny- FIG. 6. Stars A, B, C, and D and the constdrsequences on
us during pp . y ollapse. P U "Which they lie. Open circles represent stable configurations, and
merical resultgcrosseswith the analytic profiles.

closed circles denote unstable configurations.

analytical values. Throughout the evolution, we search for . . . .
apparent horizons. At=8.75M, we locate an apparent ho- these coordinates, the 3-metric for stationary spherical stars
fizon with irreducible méssM;\H/M ~1.03. (See Fig. 4 is conformally flat, and the event horizon of a Schwarzschild

This mass remains constant to within 3% until the end of thélack hole is located at=0.5M. All stars aren=1, FZZ.
simulation (=3M later. As is known analytically, all of the polytropes{see Eq(23)], and are dynamically evolved with
mass falls inside the black hole ' the gamma-law equation of stat22). The nondimensional

This test is similar to the *hydro-without-hydro” UNits throughout are set by requiriag=G=c=1.
Oppenheimer-Snyder test performed on our codéj, ex-
cept that here the matter fields and the lapse are determined A. Static stars

numerically rather than set to their analytic values. The stability properties of non-rotating=2 polytropes

are known analytically and can be used as a test of our code.
We use the OM[56] solution describing equilibrium poly-

In this section we study isolated stars, both non-rotating"oP€s in spherical symmetry as initial data, and evolve the
and rotating. The initial data, constructed from theMatter and fields dynamically. An OV star is characterized by
Oppenheimer-VolkoffOV) solution for non-rotating equilib- ©ON€ parameter, which can be taken to be the central rest
rium stars and with the code {5 for equilibrium rotating ~ density pc. (We will henceforth drop the subscript “0” on
stars, are summarized in Tablésee also Fig. 6 We use the  the rest density when referring to central rest densikipng
same coordinates as used[Bb] (except transformed from the sequence of increasipg, the masdv takes a maximum
spherical to CartesianFor spherical, non-rotating systems Value M., at a critical central densitp{™. (See Fig. 6.

(OV starg, these are the familiar isotropic coordinates. InStars withp.<p¢™ are dynamically stable, while stars with
pc>pS™ are unstable and collapse to black holes on a dy-
TABLE I. Isolated equilibrium star configurationd' & 2). namical timescale. The dynamical timescale is given by the
free-fall timepc‘llz. To verify that our code can distinguish

Star M*  Mo® Re® RO IM?® /W' Qc/Qc Ry stable and unstable configurations we evolve two very simi-

VIIl. SINGLE STARS

A 0157 0.171 0.700 0.866 000 0.000 1.00 lar models on either side of the critical point aff".

B 0.162 0.178 0540 0.714 0.00 0.000 100 Inour units,pd™=0.32 andM ,,,,=0.164. Star A has an

C  0.170 0.186 0697 0881 035 0.032 1.00 o0.gginitial central rest density;;=0.2 and is therefore stable. We

D 0171 0187 0596 0.780 034 0031 1.00 0.g7Setourouter boundariesxty,z=2 and evolve this star with

E 0279 0304 1251 1.613 1.02 0230 244 0.30three different resolutions i.6323, and 64, once again uti--

F 0049 0050 1.240 1.290 0.72 0053 5.8 0.75I|zmg octant symmetry. In Fig. 7 we show the central density
evolution for the three resolutions using harmonic slicing

28ADM mass. and the Gamma-driver shift. We see that our code does con-

bRest(baryonio mass. verge to the exaci{stationary solution. There are three

‘Coordinate equatorial radius. sources of the deviations from exact second-order conver-

dAreal radius at the equator. gence(see alsg48)). First, there are components of the error

®Ratio of angular momentum t2. which scale with a higher power of the grid widtle.g.

'Ratio of kinetic to gravitational potential energy. Ax®). Second, there is the noise caused by discontinuities at

9Ratio of central to equatorial angular velocity. the surface of the star. Finally, errors are generated by im-

PRatio of polar to equatorial coordinate radius. posing outer boundary conditions at finite distance.
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FIG. 7. Fractional change in the central rest density of star A |G, 9. The collapse of star B seen with various gauge choices.

when evolved on grids of three different resolutions.

In Fig. 8 we evolve on a 32grid with several gauge
choices. Already we see that the choice of gauge is impo
tant. Even in this static case, where the shift in the OV solu
tion vanishes, it is necessary to use a dynamic shift for lon
term stability. With the Gamma-driver, we evolve 1tpi/2
=50 (t/M=712) and never encounter an instability.

We have stably evolved star A on the®3§rid for many
fundamental radial oscillation periods, which have a perio
of about 7,=7p;*? [17]. However, we find that high-
frequency, high-amplitude oscillations appearpin after a

few periods and persist thereafter. The onset of these osci

lations can be delayed and their amplitude diminished b

by making the hydrodynamic algorithm more implicit, i.e. by

increasing the weight on the new time step in the correcto

step(see section Il B. This adversely affects our ability to
handle shocks, though. The problem may also be resolved
the use of a more sophisticated hydrodynamics scheee
e.g.,[26,27). For the less relativistic stellar model used by
[26,27] our code produces non-physical high-frequency os
cillations after about 6 radial oscillation periods. For the

14 ——hm/fz -
E e hm /Gdr .
F 1.2 - ----- Kdr/Gdllj_.n .
Q 1 S ,,,'\7:
0.8 | | ]
1.15 A A s :
< 1.05 F =
L £ 7
= 1F -~
0.95 F =
0‘9 E 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 ]

0 5 10 15

tpl/2

FIG. 8. Star A evolved on a 32grid using various gauge
choices. Here “hm” refers to harmonic lapse, “Kdr” t&-driver
lapse, “fz” to frozen shift, and “Gdr” to Gamma-driver shift.

The abbreviations are the same as in Fig. 8.

r@pplications discussed here, these late-time problems are not

relevant.

Star B has an initial central density of;=0.4 and is
namically unstable. We evolve this star with harmonic
lapse and frozen shift, imposing outer boundaries atM,.2
on two different grids (32 and 64). In Fig 9 we plot the

Yy

0central density and lapse as a function of time. The collapse

Is induced solely by the perturbations caused by putting the
star on a discrete grid. Since these perturbations become
maller as grid resolution is increased, it is not surprising that
he star on the lower-resolution grid collapses before the one

increasing grid resolution. They can be removed altogethe)?hn the higher-resolution grid. Since both collapse, it appears

at 32 zones are sufficient to distinguish stable from un-

stable stars. Eventually, the star collapses to a point at which
there are too few grid points across the star’s diameter for the
evolution to remain accurate. We terminate our evolutions

lWhen the error in the ADM mass exceeds 15% of the original

mass. The 32grid turns out to be too coarse for an apparent
horizon to be located. We do locate an apparent horizon in
the 64 run shortly before the simulation is terminated. At
this point the central lapse has collapsedte-0.05, and, as

a measure of error, the ADM mass deviates by 10% from its
initial value. The horizon mass agrees well with the ADM
massM~M py .

Also included in Fig. 9 is a 64simulation using harmonic
lapse and the Gamma-driver. Similar behavior is seen in
these coordinates. We will investigate the performance of
various gauge choices in more detail in the following sec-
tion.

B. Uniformly rotating stars
1. Inertial frame

Simulations of systems with non-zero angular momentum
are very sensitive to the choice of coordinates, which makes
them very good test cases for comparing the numerical be-
havior of different gauges and slicings. Most of these effects
can be seen when we evolve uniformly rotating stars.

We consider two uniformly rotating stars, stars C and D,
on one constant angular momentum sequehe®.01 (see
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Fig. 6). The J=0.01 sequence has a turning pointt" t/P

=0.4, M,»x=0.172. For a sequence of uniformly rotating

stars, this turning point marks the onset of secular, not dy- FIG. 11. Star C evolved on a 64322 grid with K-driver lapse

namical, radial instability57]. It is possible for a star on the and various shift choices. We plot the maximum value of the abso-

secularly unstable branch to be stabilized temporarily if thaute value ofi™ on the grid to show the dependence bfon spatial

star begins to rotate differentially, so that no instability will gauge.

develop on a dynamical timescale. However, prior numerical

studies[24] have found the point of onset of dynamical in-  Figures 12 and 13 show the behavior of the radially un-

stability to be very close to the point of onset of secularstable star D under different coordinate choices. Once again,

instability, which we confirm with our simulations here. perturbations are induced solely by the finite difference error
We again pick two similar stars on either side of the onseff the grid. We terminate simulations when mass conserva-

of secular instability: star C withp,;=0.3 on the stable tion is violated by 10% or the code crashes. The singularity

branch and star D witl;=0.5 on the unstable branch. we @voidance property of th&-driver, which approximates

dynamically evolve these two stars with different choices formaxImal slicing, is manifest: with the lapse collapsing to

the slicing and gauge. All simulations are performed on 64’emY small values, the proper time between time slices _at the
) star’s center becomes very small, which effectively

322 grids, utilizing equatorial andr symmetry to evolve “Ereezes” all quantities there. With harmonic slicing, de-

only half of a hemisphere. The outer boundaries are placed %reases more slowly, and we are able to reach higher central
[—1.5,1.9%[0,1.5]°>. There are now two relevant time Y g

T i . Y ) . densities, corresponding to later proper times, before the
scales—the free-fall timer;~p, =" and the orbital period code crashes. Given their qualitatively different behavior, it

P—a}nd a reliable code must be "’?b'e to stably evolve stabl% difficult to compare meaningfully the different lapse
rotating stars for several of both time scales.

Results for star C withri;=1.83 andP=26.38 in our 100
units, are plotted in Figs. 10 and 11. In Fig. 10 we compare
the evolution for maximal slicing40), harmonic slicing42)
and theK-driver (41), all with the Gamma-driver shift con-
dition (49). We find that there is little sensitivity to the lapse
choice except for small oscillations id which are only
present with harmonic slicing. e e |

In Fig. 11 where we compare the frozen shift condition T
(43), the AMD shift (44) and the Gamma drivef49), all
evolved with theK-driver (41) for the lapse. This comparison < 1.0
demonstrates the great importance of choosing an appropri- S ’

ate shift condition for controlling”'. AMD is dramatically
better than frozen shift in this regard, and the Gamma driver 0.95
is dramatically better than AMD. The behavior with AMD

shift does not change significantly when the criteria for con- {2

vergence of Eq(44) is made stricter. Note that the modifi- ¢

cation (46) to AMD and the Gamma-driver is not activated  FIG. 12. The evolution of the central rest density and the ADM
for this application. mass as star D collapses.
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05 1 T T T T T3 2. Rotating frame
0.4 peemssi E We compare results for uniformly rotating star C in the
XD N 3 inertial frame to results in the corotating frame in Fig. 14. In
® 02 3 — hm/fz R 3 the corotating framep'=0 at t=0. The light cylinder,
E o hm/Cdr E where points of fixed coordinate label are moving on null
01 E ] Kdr/Gdr EE paths, is atr.,=4.2, well outside our outer boundaries at
= : —_— : L — L x,y,z=1.5. All coordinate observers are therefore timelike
0.4 | E everywhere on our grid. We see a dramatic improvement in
0.5 B == 3 angular momentum conservation in the corotating frame.
& E ] This indicates that the loss dfin the inertial frame is caused
0.2 .- by error in the advection of fluid quantities alon§ Mass
01 F 3 conservation is also better in the rotating frame, but not dra-
E matically. Other quantities show qualitatively the same be-
0 4 6 8 10 havior in both frames. We have redone the evolution of col-
tpy2 lapsing star D with harmonic lapse and Gamma-driver shift

in the corotating frame, and our results were almost identical

FIG. 13. The evolution of the lapse and conformal exponent atg those in the inertial frame.

the origin as star D collapses.
C. Differentially rotating stars

choices for this scenario. If one wants to see the central \We now test the ability of our code to handle differential
region reach the farthest stage of collapse before violation afotation. Differential rotation in neutron stars is relevant in
mass conservation becomes unacceptable, harmonic lapseveral important astrophysical phenomena. Simulations in
and Gamma-driver shift seem to be the optimal combinationboth Newtonian hydrodynami¢§8] and full general relativ-
One possible reason for this is the behavioikgf, the con- ity [21,22 indicate that binary neutron star coalescence may
formal exponent at the stellar center. For the gauge choicesell lead, at least temporarily, to a differentially rotating
which are best suited to probing the central regigp,de- remnant, which can support significantly more rest mass than
creases significantly from its initial value. Inverting Shibata’suniformly rotating star§23]. Core collapse in a supernova
reasoning for modifying the AMD gauge, we infer that this May also result in a differentially rotating neutron star.
corresponds to choosing a gauge with infalling coordinates, Ve construct axisymmetric equilibrium initial data, again
This effectively increases the grid coverage of the collapsing%onowmg, [55], with z chosen as the axis of symmetry. For
star, resulting in a more accurate evolution. he rotation profile, we choose

We are only able to locate an apparent horizon in the 67)
harmonic lapse and Gamma driver simulation, and only in
the last few time steps, at which poiat,=0.05, My /M where(} is the angular velocity of the fluid), is the value
=0.58, and the error in ADM mass is about 2%. It seemsf () on the rotation axisR, is the equatorial coordinate
that 64x 322 zones are barely sufficient resolution for locat- radius, andA is a parameter that measures, in unitsRaf,

ulus=REAZ(Q— Q)

ing horizons for rotating stars reliably.

rotating frame
----- inertial frame

T

O L TR AT I

the scale over whicli changes. In the Newtonian limit this
profile reduces to

A%Q),
(x?+y?)/RE+ A%

(68)

For A— one recovers uniform rotation.
In Fig. 15 we present results for star E with,,,=0.07,

095 NV Y A~1=1, Re/M=4.48,T/|W|=0.23, and)/M?=1.02. This
R 7 T 1 3 star’s rest mass dfl ;= 0.304 exceeds the maximum allowed
1.01 F E rest mass of non-rotating'=2 polytropes by 70%. We
L1 W{Vm evolve this star on a 64322 grid, usingm symmetry, with
3099 3 e _ 3 outer boundaries af—2,2]x[0,2]2. The same star was
TUE e evolved dynamically by 23], and we confirm their finding
0.98 & k= that the star is stable over several central rotation periods.
0.970: E— '0'5- — '1 e |1:5 We found that simulations of differentially rotating stars

t/P

are very sensitive tests of hydrodynamic advection schemes.
In particular, when we used time averaging instead of Crank-

FIG. 14. The central density and angular momentum of star dNicholson time centering to treat the advection terisse
evolved on a 64322 grid with K-driver lapse and Gamma-driver Appendix A), we found that the angular momentum is con-

shift in the inertial and in the rotating frame. We see tHais

conserved much better in the rotating frame.

served very poorly. The decreaselialso causes the central
density to rise, and the numerical model to drift further and
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t/P, FIG. 17. The evolution of star F with 99.9% of its pressure
removed. This time, we evolve on a 0050 grid. The points mark
FIG. 15. Star E evolved for 4 central periods on &g grid. times when the resolution was doubled.
The M andJ curves overlap.

—

o
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star will collapse to a black hole. Thus, there is a critical

entia rotaton, the abiy 10 succesefdly conserve angulafClOpIc ConStanitc, separating these two ouomes. I
' y y 9 [59], this critical value was found to be;~0.04.

momentum depends strongly on the finite difference algo- We evolve star F on a grid of 6432 zones, with the

mhll: l::Sied floé tr\;fehgﬂ?vsy?:gﬁg for star E, with outer boundaries located at 2, or equivalently #0.8n this
9. ' max - simulation we use only equatorial symmetry so that non-

=0.0174, A =3, Re/M=26.3, T/|W|=0.0528, and m-symmetric perturbations can grow. We evolve three differ-
J/IM“=0.715. This model is identical to star | in Table Il of ent cases: one without pressure depletion withl, a su-

[59], where this star was evolved in axisymmetry. Star F is ., L "
radially stable, but, as if59], we make the situation dy- percrltlcal case Withi=0.1> e, and a su_bcrmcal case
namic by depleting pressure from the star by artificially re—W't.h #=0.001= Ky Both the second and third case present
ducing the polytropic constant (which requires us to re- unique challenges. In_the second case, the collapse is halted
solve the Hamiltonian and momentum constraints by a strong shock which must be handled accurately. In the

Removing pressure support causes the star to implode. Fg}"d case, we must follow the collapse from a radius of

small depletion factors, this collapse is halted and the st 6.9 to a radius of~M. Our resu_lts are consistent with
?Hmse of[59], even though our 3D simulations have a much

bounces and finds a new, more compact, stable equilibriu . , e ;
configuration. When is reduced to a low enough value, the poorer resolution than the axisymmetric simulation$5].
' ' In particular, our resolution is insufficient to follow the final

stages of th&c=0.001 collapse and prove that a black hole is

1000 N AL formed.
100 L [ e k= 10! _ In order to overcome this problem, we redo the
& k=107 =0.001 collapse on a 18850 grid. This grid is still too
2wl o ] sparse to resolve a black hole with radius of approximately
1M if the outer boundaries are imposed at 40.8In order
LE; — to resolve the black hole, we rezone our grid several times
T e e e e e ST during the implosion, halving the boundaries and halving the
1 A = grid spacing, so that the total number of grid points remains
08 F % e E constantcompare[60].) We present results for a simulation
s 08F E that was carried out on four different grids with outer bound-
04F = aries at 2, 1, 0.5 and 0.25. We use tKedriver and the
o2 3 Gamma-driver without the modificatig@d6). With the modi-
Y S U A Nt fication, the functiond™" grow very rapidly and cause the
0 & - 4 6 code to crash well before the radius reachesTurning off

the modification means that. will grow, and the coordi-

FIG. 16. The evolution of star F with 0%, 90%, and 99.9% of its Nates will _blOW outward. We count on the grid_ rezoning to
pressure removed, respectively. When no pressure is removed, t@unter this effect. Also, we switch to frozen shift on the last
star is stationary. When 90% is removed, we evolve until the newand finest grid of the evolution. The Gamma-driver does not
equilibrium is reached. When 99.9% is removed, the star collapsegerform well on this segment, perhaps because the grid
from an initial radius of 28 to a radius of~5M, at which point ~ boundaries have been moved in to a point where the shift
the simulation becomes inaccurate, and we terminate it. does not have its asymptotic for(g8).
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L0525 IX. BINARY SYSTEMS

20FTTTTTT T R

Binary neutron stars are among the most promising
sources of gravitational radiation for the new generation of
gravitational wave interferometers. This makes the numerical
simulation of such systems one of the most important goals
of a fully relativistic hydrodynamics code and provides one
of the most demanding tests for any such code. A binary
system allows us to uncover potential problems that may not

BT S T P PN YT T I -

~0-80-20-10 0 10 20 30 40 be evident in axisymmetric scenarios. Previous simulations
X/M .
have focused on the coalescence and merger of binary neu-
1=0.72057% tron stars[21,22. In this section we demonstrate that our

10 |

code can stably evolve binaries in stable, quasi-circular or-
bits for over two periodgcompareg17]).

As initial data for these simulations we adopt the data of
[61,62, describing two equal mass polytropes in co-rotating,
quasi-circular orbit. These data have been constructed using
the conformal “thin-sandwich” decomposition of the con-
straint equation$11—13,63,64 together with maximal slic-
N o o] ing and spatial conformal flatness.

-10 X/OM 10 2 -1 x;)M 1 2 In this section we focus on one particular case and post-

pone a more complete presentation for a forthcoming paper

FIG. 18. Snapshots of the rest density contour linespfpand  [30]- We model the neutrondstars Bs=2 polytropes with an
the velocity field ¢*,v) in the equatorial plane for a simulation of individual rest mass oMy“=0.1 in our nondimensional
the collapse of star F witlk=0.001. The contour lines are drawn units (recall that the polytropic index is set to unity. At

for po=10 (021+0DpMax “\where pM2* denotes the instantaneous infinite separation, this corresponds to an individual gravita-

maximum value ofp, for j=0,1,...,7. \éctors indicate the local tional mass ofV"=0.096. The compaction of\"¥R)..
velocity field, v'. The thick circle on the last frame marks the ap- —=0.088 implies that the gravitational fields are moderately
parent horizon. relativistic[the maximum compaction fdf=2 polytropes is

(MMYR).,=0.21]. We adopt initial data for a binary separa-
tion of z,=0.3, wherez, is the ratio between the coordinate
The results of this simulation are shown in Figs. 17 andseparation from the center of mass to the nearest point on the
18. M and J remain within 10% of their initial values star's surface to the farthest poiisee[61,62), meaning that
throughout(we terminate the calculation when this ceases tahe separation between the stellar surfaces is about 86% of a
be true) In our coordinates, the equatorial radius decreasestellar diameter. This separation is well outside the innermost
from 1.24 (25.31) to 0.04 (0.81). Since ¢ is growing, stable circular orbifISCO) as determined by the analysis of
part of this decrease in radius is a coordinate effect. Thénitial data setgsee[65]). At this separation, the total binary
coordinate-independent circumferential radius at the equatgkDM mass isM=0.19 and the total angular momentum is
(computed fromg,) decreases from M to 1.™M. At J/M?=1.36.
tpé’zz 0.98, we locate an apparent horizon with surface area We evolve these initial data on three different grids. Two
A= 0.0804 corresponding to an “irreducible” mass of “small grid” simulations are evolved on 12060° grid
(A/167%)Y2=0.8M. Is this a reasonable value? The exis-points, with a resolution oAx=Ay=Az=0.55V (the bi-
tence of rotation and of mass outside of the black hole meansary is symmetric across the equatorial plane, and, for equal
that we can no longer expect the irreducible mass of the holmass starsg-rotation symmetric around the center of mass
to be equal to the ADM mass of the entire system. The are@he individual stars are resolved byl16 grid points across
of the event horizon of a Kerr black hole with this system’sthe stellar diametetcompare[22] where much larger grids
total M and J would be.4=0.109. By breaking up the rest are usegl One of these small grid evolutions is performed in
mass integral into pieces inside and outside the horizon, wthe inertial frame, the other in a rotating frame. On these
find that 82% of the baryonic mass is inside the apparensmall (uniform) grids, the outer boundaries are imposed very
horizon. If we assume that the valuesMfandJ/M for the  close to the stargat a separation of two stellar diameters
black hole are 82% of those of the total system, we arrive atvhich we found to introduce numerical noise. We therefore
the very crude estimatd=0.0732, which is within 10% of repeated these simulations on a “large grid,” performed in a
the value determined from the apparent horizon. We termirotating frame, where we doubled the number of grid points
nate our simulation 2M after the horizon is located, during and the separation to the outer boundary, while keeping the
which time its area does not change appreciably. grid resolution constant. This corresponds to a numerical
Our agreement with59] indicates that nonaxisymmetric grid covering a cube in the domalr-66,6€ in each direc-

perturbations are not important in the collapse of this startion, in the units of Fig. 19. The size of this grid is such that
We confirm this in Fig. 18. As one can see, the density prothe corner points almost “touch” the surface of the light
files remain axisymmetric throughout. cylinder, the cylinder with coordinate radiuR, =1/Q,
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Wb ] WoF ] 0 . . .
L ] 0 0.5 1 1.5 2
L ] P
: ] FIG. 20. Evolution of the coordinate separation between the
1ol 1 -l 3 maximum rest mass density points of the two stars in the binary
: : 1 F ] system shown in Fig. 19. The time is given as a fraction of the
P T T B A T initial orbital period and the separatiahas a fraction of the initial
-20  -10 0 10 20 -20 10 0 10 20 valued; .
X/M X/M
_t=2oP large grid, no such adjustment was necessary. For both small

grid simulations we found that the stars quickly drift apart.
To compensate for this we reduced the orbital angular veloc-
ity Q) by 2% for these two cases. Again, no such adjustment
was required for the large grid.

=
= 00 ] In Fig. 19 we show contour plots of the rest dengityat
b 1 half period intervals for the large grid simulation in the ro-
' ] tating frame. The three-velocity of the fluid is represented by
—ao b, ] the arrows. The fact that the different panels look almost

o 2 identical indicates how well the binary remains in its circular
orbit.

FIG. 19. Snapshots in a rotating coordinate frame of the rest |MPOsing the outer boundaries at smaller separations we
density contour lines and the velocity field in the equatorial planeVere unable to keep the binary in circular orbit. In Fig. 20
for a simulation of a corotating binary. The contour lines are drawnwe plot the coordinate separatiohbetween the two points
for po=10" (030N Max \wherepMax denotes the maximum value Of maximum density for all three simulations as a function of
of the rest densityp, at t=0 (here it is 0.0573), forj time [66]. For the small grid in the inertial frame, the two
=0,1,...,7. \éctors indicate the local velocity field and the scale Stars start to drift apart after a very short time. When per-
is as shown in the top left-hand frame. The stars are orbiting clockforming the same simulation in a rotating frame, the stars
wise in theinertial reference frame with an initial coordinate veloc- remained in binary orbit for about two periods, but ulti-
ity of 0.10Z. P denotes the initial orbital period. mately merge. This merger is triggered by the development

of orbital eccentricity. When we compare this small grid run
where() is the rotating frame angular frequency. The possi-with the large grid simulation, we see that the eccentricity is
bility of evolution in rotating frames with grids that extend greatly reducedi67]. This result seems to validate the quasi-
beyond the light cylinder will be studied in a future article. equilibrium approach to obtaining reasonable initial data for

We used Courant factors of 0.30 and 0.46 for the smaltorotating neutron star binaries in circular equilibrium and
and large grid runs, respectively, resulting in about 3000 timginderlies the importance of the boundary proximity effect in
steps per orbit for the latter case. We adoptKhériver (41)  these simulations.
for the lapse(using eé=0.625,c=0.1, and 5 substeps per ~ We show more diagnostics of these runs in Figs. 21
step and the Gamma-drivet49) for the shift (using 7  through 25. In Fig. 21 we show the rest madsg, gravita-
=0.2,k=0.005 and 10 substepsVe used Sommerfeld type tional massM, and angular momentuthfor the three differ-
boundary conditions for the gravitational fieldsee Sec. ent simulations. The use of a rotating frame, which mini-
I1D) and Copytype for the hydrodynamical fieldsee Sec. mizes fluid advection through the numerical grid, leads to
lIIE). For the artificial viscosity we use@q,is=0.1 and large improvements, especially in the conservation of angu-
CLiis=0 (see Sec. lll ¢ We also use@d,;=0.05Q\T in Eq.  lar momentum. Close outer boundaries lead to considerable
(19). For the small, rotating frame grid, this choice led to thenumerical error. The system loses mass and angular momen-
code crashing after about a period and a half. However, weum through the emission of gravitational radiation, but at a
found that restarting the code just before that wify  rate that should lead to smaller deviations than we find in our
=0.024AT allowed us to continue the evolution. For the simulations. The maximum variation of the rest mass, gravi-
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0.7 | Rotating Frame (Small Box) ] 004
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13 | 1 0005 0.5 1 15 2
1 VP
07 [ . 1 FIG. 23. L2 norms of the Hamiltonian constraift (top) and
Rotating Frame (Large Bo! . ; . .
0.4 bl (Larg : X) s momentum constraints\i' (bottom for the large grid, rotating
0 0.5 1 1.5 2 frame simulation. All the curves have been normalized as explained
vP in Sec. IX.
FIG. 21. Rest mass, gravitational mass, and angular momentum ) ) o ) )
for the three simulations depicted in Fig. 20 . constraint. The constraint deviatiogs, which are particu-

larly sensitive to the choice of spatial gauge, remain well
tational mass, and angular momentum for the large grid rL@ehzéved dur:jng the first two orbits in these evolutions with
over the first two orbits was 0.3%, 0.3%, and 2.2%, respec- € bamma-driver. .
tively As this example demonstrates, our code is able to stably
- . . evolve binaries in stable, quasi-circular orbits for over two
In Fig. 22 we show the maximum r n nd th . . A . .
g € sho e maximum rest densiy and the orbital periods. In a forthcoming papg30] we will use this

minimum value of the lapser as functions of time. The ode to svstematically studv binarv sequences. both to dv-
small oscillations correspond to the fundamental mode of the y Y y y seq ' Y

individual neutron stars, which are induced by the truncatior{::rm'czl\lléi:ggfge ltjgii-lscﬁibﬁ?udmt?n?t?:lt dhaot\g rzcig;aetﬁtlybiﬂ;r__
error of the finite grid resolution. The period of the oscilla- y q d P

tions P~16.6 agrees well with the theoretical value tof ries in quas-circular orbit.
=16.0 (see Fig. 32 in[17]). These oscillations are not
damped, since for these runs we switched off the linear vis- X. SUMMARY

cosity terms Cpis=0). 5 We have tested our-81 relativistic hydrodynamics code

We monitor the Hamiltonia16), momentum(17), andl’  on a variety of problems. We find that our current algorithm,
(18) constraints in Figs. 23-25. We show the L2 norms of thesupplemented by driver gauge conditions, is rather robust.
corresponding constraint violations. For the Hamiltonian andrhe grid resources required for stable evolution and reason-
momentum constraint, these violations are normalized wittable accuracy are modest. We accurately evolve shock tubes,
respect td\y,c andNy, ¢ evaluated at=0 [see Eqs(59) and  spherical dust collapse, and relativistic spherical polytropes.
(60)]. In Fig. 24 we show the small-grid rotating-frame result We also evolved uniformly and differentially rotating equi-
for the Hamiltonian constraint violatiofsolid line), as well  librium polytropes, and maintained stable configurations sta-
as the result from a similar small-grid evolution in which we tionary for several rotational periods. Two applications car-
setcy =0 (dashed ling[68]. The difference between these ried out with our code are particularly significant. First, we
two lines illustrates the effect of the addition of this particu- examined the collapse from a large radius of a star with
lar term in Eq.(19) on the conservation of the Hamiltonian
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FIG. 24. L2 norms of the Hamiltonian constraift for small

FIG. 22. Maximum rest mass densipg (top) and minimum  grid, rotating frame simulations, using;=0.0AT (solid curve

lapse functiona (bottom) for the large grid, rotating frame andcy=0.00(dashed curje This plot shows the effect of the,
simulation. term in Eq.(19) on the conservation of the Hamiltonian constraint.
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0.001 APPENDIX A: TREATMENT OF ADVECTIVE TERMS IN
X comp. THE HYDRODYNAMIC EQUATIONS
0.0008 ——=- ycomp. . . . .
e 2 Comp. Solving Egs.(26)—(28) requires solving equations of the
0.0006 | form
©
0.0004 | aq  d(qu)
—q+ ) _ S (A1)

0.0002 at 2

05 o ; 5 > Let us finit_e d_ifferer_me this equation. Lgt be the value_ of)

vP at grid pointi on time leveln. Let Ax be the coordinate

- o ) distance between neighboring grid points, ah@ be the
FIG. 25. L2 norm of thel" constraintG' for the large grid,  tjime step. The Courant factor @=AT/Ax. Then we differ-
rotating frame simulation. ence(Al), say for the predictor step, as

significant spin to a Kerr black hole. Second, we evolved M= M+ AT[ (0] 10" 10— 0™ 10 110) + S
stable binary neutron stars for several orbits, maintaining (A2)
quasi-circular equilibrium. The first application indicates that

we can study the effects of angular momentum on gravitaynere

tional collapse and on the resulting waveform, an effort al-

ready initiated i59]. The second application indicates that

n n n n
we can identify and evolve dynamically stable quasi-circular o1 _PuiVitPui+1liv (A3)
i+1/27

neutron star binaries. This ability can be used to locate the phiplii
ISCO dynamically and to follow the transition from an in-
spiral to a plunge trajectory. In addition, dynamic simulation o'+ AXVIg/2 if v1>0,

allows us to improve binary initial data, for example by al- Q1=

lowing initial “junk” gravitational radiation to propagate Y2 gl — AXVD,4g/2 i o<,
away. We also hope to compute detailed gravitational wave-

forms form these binaries, refining the wavetrains reported inp Eq. (A4),

[49,50.

We note that several challenges remain to be addressed oAD AP
before there exists a code capable of modeling all the gravi- it s 8
tational wave sources of current astrophysical interest. One  V{q= 0+ AL 0
problem is the need to maintain adequate grid coverage of 0 otherwise,
the collapsing star or inspiralling binary while still keeping (A5)
the outer boundaries sufficiently distant, i.e. the problem of

dynamic range. Adaptive mesh techniques far more sophlst{l-v ereA”, 1,q=(q", ;—q"/Ax. In many van Leer schemes,

cated than the crude rezoning used here may be necessary, termq+ AxVa/2 in Eq. (A4) is replaced by the time-

related problem concerns gravitational wave extraction, as 'I:E\vera ing expression+ (Ax—vAT)Vq/2. Since we use a
currently is not possible to place outer boundaries in the ging exp og are.

wave zone. Finally, the formation of black hole singularitiespred'Ctor’correc’[Or method, we do not need to time average.
in hydrodynamic collapse scenarios remains an additional

challenge to determining the late-term behavior of such sys- APPENDIX B: NEWTONIAN LIMIT OF THE EULER

tems. Special singularity-handling techniques, such as exci- EQUATION IN A ROTATING FRAME

sion, need to be developed further.

(Ad)

it A 1047% 1,9>0,

Here we recover the Newtonian Euler equation in a rotat-
ing frame, as given for instance [i9], taking the weak-field
limit of the general relativistic Euler equation. All variables
and differential operators are given in the rotating frame,
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&t(p*ak) + (9i(p*ltlkvi) =— ae®P—p,ulahia ae®® g P— P
—p*ﬂj&kﬁj P*Uoha&ka—)P*ﬁkﬁf’N
h((Wa)2-1) [(UWa)?—1]
B C b P 2p N34 h—0 (89)
u® u
—4¢0.1). —4¢
p.€ Uity . p.e Y. L
T 7 ®2 o a0,

wherep, andh are defined in Sec. Il A. Using the continu- The final term is composed using E®5):
ity Eq. (24) we can rewrite the left-hand sideHS) of Eq.
(B2) as Pl Bl p. Lol + (XD ]a(AXP).  (B10)

1 — |
P oU) T 9i(pat’) = pu AU+ U G U). B3) We rewrite the first term above as
To obtain the Newtonian limit, we expand the different terms L L . .
in Eq. (B2) to first order in the Newtonian potentigly, and P! A(QAXT) =p, 0! (AX 1)
the square of the fluid velocity. For instance,

:P*ekjntQn
a’ki_’éki = —p*(ﬁXJ)k, (B11)
u°—>1+%2 and the second term as
_— P (AXDgG(QAXr)=—p,[AX(Qxr)] (B12
eb—1-26y (B4) Combining Eqs(B8), (B9), (B11) and(B12), yields
a—1+ ¢y P[5+ 0 305+ (A% V)K= — 9P —p,dxdn—p.(Q X 0)K
=B (X)) - (GXT), —p (AX(Qxr)k  (B13

By rearranging terms and replacipg by its limit the mass
densityp yields the Newtonian limit of the general relativis-
tic Euler equation(B2) :

Whereﬁ is the shift vector in an inertial frame) is the
angular velocity of the rotating frame with respect to the

inertial frame, andFE(x,y,z) is the position vector. The
limits (B4) combined with Eq(B1) give 1
R . Kypigoke — Z 5 p_ (G X
Uk—>Uk+(QXr)k, (BS) ﬂtv U (7|U p&kp akd)N Z(Q U)
We proceed now to take the Newtonian limit of the right- —[Ox(Qxn) (B14)
hand sidg(RHS) of Eq. (B3). To do so, we note that

. . < . where the last two terms of the RHS correspond to the fa-
FUg— "+ (A XT)" = d (B6)  miliar Coriolis and centrifugal force terms.

sinced (}=d,r =0, and APPENDIX C: ADM MASS AND ANGULAR MOMENTUM
o _ L , o IN ROTATING FRAMES
vigu—v' [ vk (XN =005+ (Qxv)k. (B7)
In this appendix, the “barred” fields represent variables in
These conditions together with E@3) give the Newtonian the inertial frame, while the non-barred ones are quantities in

limit of the LHS of equationB2), rotating frames. In Sec. V we defined the total mass and the
angular momentum of an asymptotically flat spacetime by
Gi(p U+ di(pUw") — p, [ dv*+v! gk + (A X 0)K]. two surface integralfEqgs.(61) and(62), respectivelywhich

(B8) characterize the asymptotic behavior of the metric on a time
slice. These surface integrals were transformed into the vol-
To work on the RHS of Eq(B2) to Newtonian order, we ume integralg63) and(64) according to the calculation de-
derive the following limits using Eqs(B4), again keeping scribed in[33]. These volume integrals are numerically
only the first order terms iy andv?: evaluated in our code on the computational grid. When
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working in rotating frames, one might worry that these inte- N 1 _ 1 — —
grals do not apply, since the 4-metric is not asymptotically M =f e’ p+ KA”A” - TKZ - KF'JKFNK
flat due to theQ) X r term in the shift. It turns out that this is v 4 4 4

not a problem, since the surface integral formulashoand 1—et—]

J can be obtained assuming only that the 3-metric and ex- + R|d®x (Cy
trinsic curvature are asymptotically flgf0]. Therefore, we 16m

can evaluate the volume integra&3) and(64) in the rotat-  For simplicity, we take the inertial coordinate system to be
ing frame and be sure that théandJ that we find at a given  the one which is instantaneously aligned with our rotating
time will be the same as what we would have found byframe at the time that we are computiMyandJ. Then the
transforming into an inertial frame and then computing thetransformation is given by Eg$51), (52), and(53). [From
integrals. We can see this explicitly by transforming the in-Eq. (7), we see thap is an invarianfl Applying these rules,
tegrands from an inertial to a rotating frame. For examplewe see that every term in the integrand is identical in the
the masg63) written in terms of the “barred” inertial frame inertial and rotating frames. The same is true of the inte-

guantities is

grands forJ and M.
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