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Hydrodynamic simulations in 3¿1 general relativity
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We solve Einstein’s field equations coupled to relativistic hydrodynamics in full 311 general relativity to
evolve astrophysical systems characterized by strong gravitational fields. We model rotating, collapsing and
binary stars by idealized polytropic equations of state, with neutron stars as the main application. Our scheme
is based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the field equations. We assume adiabatic
flow, but allow for the formation of shocks. We determine the appearance of black holes by means of an
apparent horizon finder. We introduce several new techniques for integrating the coupled Einstein-
hydrodynamics system. For example, we choose our fluid variables so that they can be evolved without
employing an artificial atmosphere. We also demonstrate the utility of working in a rotating coordinate system
for some problems. We use rotating stars to experiment with several gauge choices for the lapse function and
shift vector, and find some choices to be superior to others. We demonstrate the ability of our code to follow
a rotating star that collapses from large radius to a black hole. Finally, we exploit rotating coordinates to evolve
a corotating binary neutron star system in a quasiequilibrium circular orbit for more than two orbital periods.
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I. INTRODUCTION

With the availability of unprecedented observational da
the physics of compact objects is entering a particularly
citing phase. New instruments, including x-ray andg-ray
satellites and neutrino observatories, are detecting sig
from highly relativistic events in regions of strong gravit
tional fields around neutron stars and black holes. A n
generation of gravitational wave interferometers is promis
to open a completely new window for the observation
compact objects. The ground-based gravity wave observ
ries Laser Interferometric Gravitational Wave Observat
~LIGO! and TAMA are already operational and are collecti
data, GEO and VIRGO will be completed soon, and a spa
based interferometer Laser Interferometer Space Ante
~LISA! is currently under design.

Given the small signal-to-noise ratio in these new gra
tational wave detectors, theoretical models of likely sour
are needed for the positive identification of the signal as w
as for its physical interpretation@1#. One promising tech-
nique for the identification of signals in the noise output
the detector is matched filtering, which requires accurate
oretical gravitational wave templates@2#. The need for such
templates has driven a surge of interest in developing relia
techniques capable of their construction.

Compact binaries, i.e. binaries consisting of either bla
holes or neutron stars, are among the most promising sou
of gravitational radiation. Much progress has been mad
refining post-Newtonian point-mass approximations. Th
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are suitable for large binary separations for which relativis
effects are sufficiently small and any internal structure can
neglected@3#. At small binary separations, the most prom
ing technique for modeling the inspiral, coalescence a
merger is numerical relativity.

Several other observed phenomena involving compact
jects require numerical relativity for their modeling. On
such example is gamma ray bursts~GRBs!. While it is not
yet known what the origin of GRBs is, the central source
almost certainly a compact object@4#. Most scenarios in-
volve a rotating black hole surrounded by a massive mag
tized disk, formed by a supernova, or the coalescence
binary neutron stars@5#. To confirm or refute any GRB sce
nario requires numerical studies in full 311 relativistic mag-
netohydrodynamics.

Another astrophysical scenario requiring numerical tre
ment is the formation of supermassive black holes~SMBHs!.
Among the scenarios proposed to explain SMBH format
are the collapse of a relativistic cluster of collisionless m
ter, like a relativistic star cluster@6# or self-interacting dark
matter halo@7#, or the collapse of a supermassive star@8#.
Depending on the details of the collapse, SMBH formati
may generate a strong gravitational wave signal in the
quency band of the proposed space-based laser interfe
eter LISA. Understanding the SMBH formation route m
shed key insight into structure and galaxy formation in t
early universe.

Solving the coupled Einstein field and hydrodynam
equations is a challenging computational task, requiring
simultaneous solution of a large number of coupled nonlin
partial differential equations. In addition to all of the usu
problems of numerical hydrodynamics—handling advecti
shock discontinuities, etc.—one encounters the problems
herent to numerical relativity. The latter include identifying
suitable formulation of Einstein’s field equations, enforcing
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DUEZ et al. PHYSICAL REVIEW D 67, 024004 ~2003!
well-behaved coordinate system, and, if black holes
formed, dealing with spacetime singularities.

The construction of self-consistent numerical solutions
the coupled equations of relativistic hydrodynamics a
gravitation dates back to the pioneering work of May a
White in spherical symmetry@9# ~see also@10# for a review!.
In one of the first attempts to perform numerical integratio
in three spatial dimensions, Wilson, Mathews, and M
ronetti @11–13# ~see@14,15# for later corrections! tackled the
binary neutron star problem. They simplified Einstein’s fie
equations by assuming that the spatial metric remains c
formally flat at all times. Their implementation of relativist
hydrodynamics was based on earlier work by Wilson@16#
and used upwind differencing to handle advection and ar
cial viscosity to capture shocks. The first fully self-consiste
relativistic hydrodynamics code, which treats the gravi
tional fields without approximation, was developed by S
bata@17#. This code, based on earlier work by Shibata a
Nakamura@18#, adopts a Van Leer hydrodynamics schem
@19,20# and also employs artificial viscosity for shocks. Th
code has been used in various astrophysical applications
cluding the coalescence and merger of binary neutron s
@21,22# and the stability of single, rotating neutron stars@23–
25#. In an alternative approach, Fontet al. @26# implemented
a more accurate high-resolution shock-capturing techniqu
solve the equations of relativistic hydrodynamics. This co
has been used to study pulsations of relativistic stars@27#.

In this paper we report on the status and some astroph
cal applications of our new 311 general relativistic hydro-
dynamics code. Our code, based on the so-called Baumg
Shapiro-Shibata-Nakamura ~BSSN! formulation of
Einstein’s equations@18,28#, has several novel features, in
cluding an algorithm that does not require the addition o
tenuous, pervasive atmosphere that is commonly used in
lerian hydrodynamical codes, both Newtonian and relativ
tic. This ‘‘no atmosphere’’ algorithm proves to be very robu
and eliminates many problems associated with the traditio
atmospheric approach@29#.

We treat 1D shocks, spherical dust collapse to black ho
and relativistic spherical equilibrium stars to demonstrate
ability of our code to accurately evolve the coupled field a
hydrodynamic equations in relativistic scenarios. We th
use the evolution of stable and unstable uniformly rotat
polytropes as a testbed to determine which gauge condit
are best behaved in the presence of strong-field ma
sources with significant angular momentum. We introdu
rotating coordinate systems and show that these can y
more accurate simulations of rotating objects than iner
frames. We demonstrate the ability of our code to hold ac
rately stable differentially rotating stars in equilibrium. W
also show that our code can follow the collapse of rapi
differentially rotating stars reliably until an apparent horiz
appears, by which time the equatorial radius has decre
from its initial value by more than a factor of ten.

We then turn to simulations of binary neutron stars. W
adopt initial data describing corotatingn51 polytropes in
quasiequilibrium circular orbit, and evolve these data
over two orbital periods. In this paper we present results
one particular binary and discuss the effect of corotat
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frames as well as the outer boundaries. An extended st
including binary sequences up to the dynamically identifi
innermost stable circular orbit~ISCO!, will be presented in a
forthcoming paper@30#.

This paper is organized as follows. Sections II and
describe our method of evolving the field and hydrodynam
equations, respectively. Section IV summarizes the vari
gauge choices with which we experiment. Section V lists
diagnostics used to gauge the reliability of our simulatio
Section VII describes several tests of our algorithm. Sect
VIII applies our formalism to evolve nonrotating, uniforml
rotating, and differentially rotating polytropes. Section I
sketches our binary neutron star calculations. Our results
summarized in Section X. Some details of our hydrodynam
scheme and the rotating frame formalism are presented in
Appendixes.

II. GRAVITATIONAL FIELD EVOLUTION

A. Basic equations

We write the metric in the form

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!, ~1!

wherea, b i , andg i j are the lapse, shift, and spatial metri
respectively. The extrinsic curvatureKi j is defined by

~] t2Lb!g i j 522aKi j , ~2!

whereLb is the Lie derivative with respect tob i . We choose
geometrized units withG5c51 throughout, so Einstein’s
field equations are

Gmn58pTmn . ~3!

We use greek letters to denote spacetime indices, and
letters for spatial indices. Using the above variables, the fi
equations~3! split into the usual 311 ADM equations@31#.
These consist of the Hamiltonian constraint

R2Ki j K
i j 1K2516pr, ~4!

the momentum constraint

D jKi
j2DiK58pSi , ~5!

and the evolution equation forKi j

~] tKi j 2LbKi j !52DiD ja1a$Ri j 22Kil K j
l 1KKi j

28p@Si j 1
1
2 g i j ~r2Si

i !#% ~6!

in addition to Eq.~2!. HereD, Ri j and R are the covariant
derivative operator, the three-dimensional Ricci tensor a
the scalar curvature associated withg i j . The matter source
termsr, Si andSi j are projections of the stress-energy tens
with respect to the unit normalna on the time slice

r5nanbTab

Si52g ianbTab ~7!
4-2
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Si j 5g iag j bTab.

Since numerical implementations of the Arnowitt-Des
Misner ~ADM ! equations typically develop instabilities afte
very short times, we use a reformulation of these equati
that is now often referred to as the BSSN formulati
@18,28#. This reformulation consists of evolving the confo
mally related metricg̃ i j , the conformal exponentf, the
trace of the extrinsic curvatureK, the conformal traceles
extrinsic curvatureÃi j , and the conformal connection func
tions G̃ i defined by

g i j 5e4fg̃ i j ~8!

Ki j 5e4f~Ãi j 1
1
3 g̃ i j K ! ~9!

G̃ i52g̃ , j
i j , ~10!

where det(g̃ i j )51 and tr(Ãi j )50. In terms of these vari-
ables, Eqs.~2! and ~6! become

~] t2Lb!g̃ i j 522aÃi j ~11!

~] t2Lb!f52
1

6
aK ~12!

~] t2Lb!K52g i j D jDia1
1

3
aK21aÃi j Ã

i j

14pa~r1Si
i ! ~13!

~] t2Lb!Ãi j 5e24f@2DiD ja1a~Ri j 28pSi j !#
TF

1a~KÃi j 22Ãil Ã j
l ! ~14!

and

] tG̃
i5] j~2aÃi j 1Lbg̃ i j !

5g̃ jkb , jk
i 1

1

3
g̃ i j b ,k j

k 2G̃ jb , j
i 1

2

3
G̃ ib , j

j 1b j G̃ , j
i 22Ãi j ] ja

22aS 2

3
g̃ i j K , j26Ãi j f , j2G̃ jk

i Ã jk18pg̃ i j Sj D ~15!

~see@28# for the computation of the Lie derivatives.!
In terms of the BSSN variables, the constraint equati

~4! and ~5! become, respectively,

05H5g̃ i j D̃ i D̃ je
f2

ef

8
R̃1

e5f

8
Ãi j Ã

i j 2
e5f

12
K212pe5fr,

~16!

05Mi5D̃ j~e6fÃj i !2
2

3
e6fD̃ iK28pe6fSi , ~17!

where Si5g̃ i j Sj . While the two constraints are identicall
zero for analytical solutions, they vanish only approximat
in numerical calculations. Thus, the Hamiltonian and m
02400
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mentum constraint residualsH andM can be monitored as a
code test during numerical evolution calculations. In t
BSSN formulation, we also monitor the new constraint

05G i5G̃ i1g̃ , j
i j . ~18!

B. Boundary conditions

Like any other hyperbolic system, the Einstein field equ
tions must be supplemented by initial conditions and bou
ary conditions to have a unique evolution. We adopt bou
ary conditions that follow from the assumption of asympto
flatness, i.e.gab→hab . In the asymptotic domain, mono
pole terms dominate in the longitudinal variables, sof
}r 21. The transverse fields will be dominated by outgoi
gravitational waves, sog̃ i j 2h i j } f i j (t2r )r 21 and Ãi j
}ai j (t2r )r 21, where f i j andai j are unknown functions of
retarded time. Note thatr 21 is a special case off (t
2r )r 21, so thatf, g̃ i j , and Ãi j all satisfy outgoing wave
boundary conditions. The appropriate boundary conditio
for K and G̃ i depend on the gauge conditions used in
interior.

C. Numerical implementation

We evolve Eqs.~11!–~15! using an iterative Crank-
Nicholson scheme with one predictor step and two correc
steps@32#. In this algorithm a functionf with time derivative
ḟ is updated from its valuef n at time stepn to its valuef n11

at the next time stepn11 a timeDT later. In the explicit
predictor step 1f n115 f n1DT ḟn, where ḟ n is computed
from quantities on time stepn, a ‘‘predicted’’ new value
1f n11 is found. In the following two corrector steps,2f n11

5 f n1DT( ḟ n11 ḟ n11)/2 and f n1153f n115 f n1DT( ḟ n

12 ḟ n11)/2, these predicted values are ‘‘corrected.’’ The fin
value f n11 converges quadratically inDT. DT is set by the
Courant factor:C5DT/Dx, whereDx is the coordinate dis-
tance between adjacent grid points. We typically useC
50.5. The code implementing this evolution scheme h
been discussed elsewhere@28#, so we will highlight here
only the new features of our code.

We enforce the algebraic constraints detg̃ i j 51 and
tr(Ãi j )50 as described in@33#. Also following @33#, we re-
place the term2

3 G̃ ib , j
j in Eq. ~15! with the analytically

equivalent2(g̃ , j
i j 1 1

3 G̃ i)b , j
j . These changes have little effe

on the evolutions described in this paper, but lead to sign
cant improvements when treating black holes by excis
boundary conditions@33#.

We use second order centered differencing for all spa
derivatives in the field equations. We have not found it n
essary to use upwind differencing for any derivatives. We
find, however, that the addition of some dissipation in t
evolution equation forf increases the stability of the code
This can be supplied by upwind differencing of the ter
which advectsf along the shift, and we have confirmed th
this will indeed improve the stability. However, we have ch
sen instead to add the Hamiltonian constraint to the evolu
equation forf, as follows
4-3
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~] t2Lb!f52
1

6
aK1cHH. ~19!

Here the parametercH is set between 0.02DT and 0.06DT.
cHH is a diffusive term, with Courant condition given@34#
by 2cHDT/(Dx)2<1, so makingcH proportional toDT is
necessary in order to avoid an instability at high resolutio
It also provides dimensional consistency in Eq.~19!. Using
Eq. ~19! offers the advantage of significantly decreasing
growth in the error of the Hamiltonian constraint~see Sec.
IX for an example of this.! We note that the above is simila
to one of the modifications of BSSN suggested in@35#.

D. Implementation of boundary conditions

As discussed in Sec. II B, we use Sommerfeld bound
conditions for most of the field variables. That is, the va
of a quantityf on the boundary at timet and distancer from
the origin is

f ~r ,t !5
r 2Dr

r
f ~r 2Dr ,t2DT!, ~20!

whereDT is the time step andDr 5ae22fDT.
For the functionsG̃ i we have experimented with sever

boundary conditions. We find little sensitivity to the cond
tion used; the best choice seems to be fixingG̃ i at their initial
values~zero, for most of the applications here!. In our evo-
lutions, we use shift vectors designed to make] tG̃

i small,
and we achieve] tG̃

i50 to high accuracy in the outer region
of our grids. Therefore, fixingG̃ i at the boundaries is consis
tent with the constraints and our gauge choices.

III. RELATIVISTIC HYDRODYNAMICS

A. Basic equations

We describe the matter source of the Einstein equation
a perfect fluid so that the stress-energy tensor can be wr

Tmn5~r01r0e1P!umun1Pgmn . ~21!

Here r0 , e, P, and um are the rest-mass density, speci
internal energy, pressure, and fluid four-velocity, resp
tively. We adopt aG-law equation of state

P5~G21!r0e, ~22!

whereG is a constant. For isentropic flow, this is equivale
to the polytropic relation

P5kr0
G , ~23!

wherek is a constant. In our simulations we encounter no
isentropic flow~due to shocks!, and hence we use Eq.~22!.

The equations of motion follow from the continuity equ
tion

¹m~r0um!50 ~24!

and the conservation of stress energy
02400
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Tmn
;n50. ~25!

Following @17#, these equations can be brought into the fo

] tr!1] i~r!v i !50 ~26!

] te!1] i~e!v i !50 ~27!

] tS̃k1] i~S̃kv
i !52ae6fP,k2wha ,k1S̃jb ,k

j

2
ae24fS̃i S̃j

2wh
g̃ ,k

i j 1
2ah~w22r!

2!

w
f ,k ,

~28!

where h511e1P/r0 , r!5r0au0e6f, w5r!au0, e!

5(r0e)1/Gau0e6f, S̃k5r!huk , and v i5ui /u0 is the
3-velocity. The quantityw is determined by the normaliza
tion conditionunun521, which can be written

w25r!
21e24fg̃ i j S̃i S̃jF11

Ge!
G

r!~we6f/r!!G21G22

. ~29!

The perfect fluid given by Eq.~21! generates the following
source terms for the ADM equations:

r5hwe26f2P ~30!

Si5e26fS̃i ~31!

Si j 5
e26f

wh
S̃iS̃j1Pg i j . ~32!

We will only be considering systems where there
vacuum everywhere outside the star or stars. Therefore,
appropriate boundary condition on the matter flow is that
material should be flowing into the grid through the ou
boundaries.

B. Numerical implementation

We evolve the hydrodynamic variables using an iterat
Crank-Nicholson scheme. This scheme is slightly differe
from the one used to update the field variables. In the c
rector steps, instead of weightingḟ n and i ḟ n11 equally @i.e.
i 11f n115 f n1DT(0.5ḟ n10.5i ḟ n11)], we make the evolu-
tion more implicit by setting i 11f n115 f n1DT(0.4ḟ n

10.6i ḟ n11). This makes the code slightly more stable.
As is often done in hydrodynamics codes@36#, the updat-

ing of the fluid variables onto a new time step is divided in
two steps~‘‘operator splitting’’!: the advection step@account-
ing for the advective terms on the left-hand sides of E
~26!–~28!#, and the source step@accounting for the right-
hand sides of Eqs.~26!-~28!#. Each step of a Crank
Nicholson update consists of applying first an advection s
step and then a source substep. Our scheme for carrying
the advection substep is similar to the van Leer scheme,
is discussed in detail in Appendix A. Since Eq.~26! has no
sources,r! is completely updated after it is advected. Fo
4-4
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lowing @29#, we then use the updatedr! to complete the
updating ofe! and S̃k . It is shown in @29# that this gives
improved behavior in Newtonian simulations of binary po
tropes.

C. Artificial viscosity

In order to accurately handle shocks, our code must al
heating to occur in the fluid. We therefore introduce an a
ficial viscosity. This is done by adding viscous pressu
terms to the total pressure. We have implemented two ty
of artificial viscosity: quadratic~with corresponding pressur
PQvis) and linear~with corresponding pressurePLvis). Shock
heating causes an increase in the local internal energy.
lowing @17#, we change Eq.~27! to

] te!1] i~e!v i !52~r0e!2111/G]kS we6fvk

r!
D PQvis1PLvis

G
.

~33!

Shocks are handled primarily by means of the quadr
artificial viscosity. The quadratic viscous pressure we ad
given by @17#

PQvis5H CQvisA~dv !2 for dv,0,

0 otherwise,
~34!

where A is defined as e!
G/(we6f/r!)G21 and dv

52]kv
kDx. We have also implemented linear artificial vi

cosity terms@37# that can be used to dissipate radial oscil
tions triggered in stars by the truncation error associated w
finite differencing. The corresponding addition to the pre
sure is

PLvis5H 2CLvisA~G/n!r!Adv for dv,0,

0 otherwise.
~35!

Linear viscosity can be used at the beginning of a run
drive the initial data to dynamical equilibrium and lat
switched off. Figure 1 shows an example of how the rad
oscillations can be quenched by linear viscosity. For this p
ticular example, thePLvis was active only where the res
mass density exceeded a particular threshold value, to f
this dissipative effect only deep inside the neutrons stars.
~small! dissipated kinetic energy goes into thermal ener
We typically use 0.1<CQvis<1.0. Linear artificial viscosity
is not used in the runs described below.

D. Non-atmospheric hydrodynamics

Numerical work in Eulerian hydrodynamics, both New
tonian and relativistic, has typically required the presence
a pervasive tenuous ‘‘atmosphere’’ that covers the comp
tional grid outside the stars. To our knowledge, most p
lished codes to date need to keep a minimum nonzero
sity that is usually set to be several orders of magnitu
smaller than the maximum stellar density. Such an atm
sphere has been necessary to prevent overflows arising
dividing by density in cells devoid of matter. This artificia
atmosphere has to be small enough not to affect the
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dynamical behavior of the system. However, very small v
ues will propagate the round-off numerical error very quick
every time a division by the density is performed. A proble
with the presence of this atmosphere is that as soon as
time evolution starts the material begins to fall onto the s
creating accretion shocks. Swestyet al. @29# solved this
problem by adding a non-zero temperature to the atmosp
to restore some sort of equilibrium that would counterb
ance the infall. Also, in order to avoid the bow shocks ge
erated in the atmosphere by two stars in circular orbital m
tion, these authors provide the atmosphere with ini
angular velocity. These are some of the typical proble
present in the traditional artificial atmosphere approa
found in many Eulerian hydrodynamics schemes.

In this paper we present a very simple algorithm that d
not require the presence of atmospheric material. It cons
of two ingredients. The first is the use of the spatial comp
nents of the linear momentum variableSk as our hydrody-
namical variable@38# instead of the traditional fluid four-
velocity spatial componentsui used in most hydrodynamica
codes~see, for instance,@17#!. In the latter case, the Eule
equation is used to update the flux (r! ui). Once this update
is completed, the dynamical fieldui is recovered by dividing
by the densityr!. Using Sk as a variable, we avoid thes
divisions. The only time when the variableui needs to be
calculated explicitly is when we need the three-velocityv i

that appears in every advection term on the left-hand sid
Eqs.~26!–~28!. To avoid doing this calculation for very low
valuesr!, we add the second ingredient: the introduction
a threshold valuer!min below which all the hydrodynamica
fields are set to vacuum values~i.e. r!5ui5v i50). A typi-
cal value forr! min is 1027 times the maximum initial value
of r!.

However, as the time evolution progresses, a tenuous s
of material typically drifts away from the stars and crea

FIG. 1. Maximum rest mass densityr0 as a fraction of its initial
value r0i for the binary system shown in Fig. 19. Stellar rad
oscillations can be efficiently quenched by the proper use of lin
viscosity, as shown here. The solid line shows the evolution with
linear artificial viscosity, while the dashed line shows the effect
this dissipative term.
4-5
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regions of very low density outside our stars. If nothing sp
cial is done in these regions, small shocks will heat the lo
density matter to very high temperatures, creating large p
sures and pressure gradients. These pressure gradients w
turn generate large velocities. Although the low-density
gion has a negligible effect on our stars and spacetime
can cause the code to crash if velocities are allowed to
come too large. Therefore, we impose a heating limit outs
the star

e!5min~e!,10r!! if r!,efactor3r!max, ~36!

whereefactor is a constant that is determined empirically for
given physical scenario. We generally choose values betw
1023 and 1026, where the larger values ofefactor were only
needed in simulations of collapsing stars with a stro
bounce. We note that this is similar to the technique use
@26#, in which the polytropic equation of state~23! is applied
in the low-density region outside the star or stars.

E. Boundary conditions

Since matter often diffuses outward, albeit in minu
quantities, from the surface of the star~s! to the boundaries
we need to impose boundary conditions on the matter at
outer grid points. In algorithms where an artificial atm
sphere is present, it is crucial to choose boundary condit
which do not lead to a continuous inflow from the bounda
or to bad behavior in the atmosphere. By eliminating such
atmosphere, however, all reasonable boundary condit
yield the same behavior so long as the boundaries are pl
far enough from the star~s! that little matter ever reache
them.

We usually use an outflow boundary condition. For e
ample, if thex coordinate of grid points is indexed by a
integer i with i min<i<imax, this boundary condition at the
outer-x boundaryi 5 i max is implemented as

r!max
n11 5r!max21

n11 ~37!

e!max
n11 5e!max21

n11 ~38!

S̃imax
n115H S̃imax21

n11 if S̃imax21
n11 .0

0 otherwise.
~39!

We have experimented with other boundary conditions
well. We have tried fixingr! , e!, and S̃k at their initial
values. We have also tried simply copying the adjacent g
point onto the boundary with no outflow restrictions~Copy!.
These conditions produce similar results to those of the
flow condition for all applications, while being somewh
less computationally expensive.

IV. GAUGE CHOICES

A. Lapse

We experiment with several time slicing conditions. Fir
we try maximal slicing~mx!, which enforcesK5] tK50:
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052g i j D jDia1aÃi j Ã
i j 14pa~r1S!. ~40!

This slicing condition has the advantages of controllingK
and avoiding singularities. Unfortunately, it is a compu
tionally expensive gauge choice, since it involves solving
elliptic PDE every time step. Therefore, we also try a slici
condition which approximates maximal slicing, the so-call
‘‘ K-driver’’ ~Kdr! proposed by Balakrishnaet al. @39#. The
idea is to convert the elliptic equation~maximal slicing! into
a parabolic evolution equation

] ta52e~] tK1cK!, ~41!

where e and c are positive constants. The equation] tK5
2cK, corresponding to exponential decay inK, is the solu-
tion of Eq. ~41! ase→`. However, settinge at too large a
value in our code will produce a numerical instability.~See
the discussion ofcH in Sec. II C.! Fortunately, this limitation
can be overcome. We are able to effectively evolve w
largere by breaking up each time step into several subst
and evolve Eq.~41! using a smallerDT than that used by the
other variables. On each substep, we use the values o
metric on the destination time level, so the process is equ
lent to solving the elliptic equation] tK1cK50 by relax-
ation, except that we do not carry the process to conv
gence. Instead, we typically use 5 substeps per step, wie
50.625 andc50.1.

An even less computationally expensive lapse conditio
harmonic slicing~hm!, which for vanishing shift reduces to

] t~a21g21/2!50. ~42!

We apply this condition unchanged for the vanishing a
non-zero shift, and find that it often gives behavior similar
that obtained by using the above two slicings.

B. Shift

We also experiment with different spatial gauge choic
The simplest admissible shift choice, which turns out to
surprisingly good for collapsing star applications, is to ke
the shift ‘‘frozen’’ ~fz! at its initial values

b i~ t !5b i~0! ~43!

at each grid point.
We also try the approximate minimal distortion~AMD !

gauge introduced by Shibata@40#

d i j ¹
2b i1

1

3
b ,k j

k 5Jj , ~44!

where¹2 is the flat-space Laplacian and

Ji516paSi12Ãi j ~a , j26af , j !1
4

3
aK ,i . ~45!

This gauge condition was designed to approximate the Sm
and York minimal distortion shift condition@41#, which in
turn was constructed to minimize gauge-related time va
tion in the spatial metric. As Shibata points out@24#, the
4-6
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AMD condition must be modified~MAMD ! in the event of a
collapse in order to prevent a ‘‘blowing out’’ of coordinate
from the center, which manifests itself by a growth in t
proper 3-volume element, i.e. by growth inf. Of course,
there may exist many alternative gauges in whichf does
diverge as a star collapses to a black hole. However, as
computational grid will be ‘‘blown out’’ along with the co
ordinates, removing this divergence with our gauge choic
necessary if one wants to accurately evolve the central re
during the collapse. The blowing out can be controlled
preventing the radial component of the shift from becom
large and positive

b i5H bAMD
i for fc,~4/3!fci ,

bAMD
i 2 f bAMD

r xi

r
otherwise,

~46!

wherebAMD
i is the solution of Eq.~44!, fc is the value off

at the coordinate origin,fci5fc(t50), and

f 5S 3fc

2fci
22D 1

11~r /R!4 ~47!

bAMD
r 5xkbAMD

k /r , ~48!

whereR is a constant. This correction is only useful in co
figurations with near spherical symmetry, so that the colla
is nearly radial at the center. It is disabled for simulations
binary systems.

Finally, we try approximating the ‘‘Gamma-freezing
condition ] tG̃

i50 using a ‘‘Gamma-driver,’’~Gdr!, which
controlsG̃ i in the same way that theK-driver controlsK

] tb
i5k~] tG̃

i1hG̃ i !. ~49!

Here k and h are positive constants, and, as with t
K-driver, we can effectively makek larger than would other-
wise be possible by breaking up each step into multiple s
steps. This shift condition has been used successfully
black hole evolution calculations@42#. The Gamma-freezing
condition is closely related to minimal distortion~and hence
approximate minimal distortion!, and it is hence not surpris
ing that the modification~46! must also be applied to th
Gamma-driver shift. Typical values for the Gamma-drive
parameters arek50.01 andh50.2, using 10 substeps pe
step.

We have also written an implementation of the fu
Gamma freezing condition (] tG̃

i50). However, applying
this condition requires solving three coupled elliptic equ
tions each time step@see Eq.~15!#, and we have found
Gamma-freezing to be too computationally expensive to
worth solving exactly.

For each of the above shift types, the shift is on
uniquely specified after its boundary conditions have b
chosen. This is significant because, as we show in Sec. IV
the asymptotic behavior of the shift depends on whether
are in an inertial or a rotating coordinate frame.
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C. Rotating frames

Rotating coordinate frames possess superior angular
mentum conservation capability over inertial frames in ma
applications, such as the hydrodynamical evolution of bi
ries systems. In transforming from an inertial frame w
coordinates (t̄ ,x̄,ȳ,z̄) to a rotating frame with coordinate
(t,x,y,z) and constant angular frequencyVW 5Vez

W , we apply
the following relations

t̄ 5t

x̄5x cos~Vt !2y sin~Vt !

ȳ5x sin~Vt !1y cos~Vt ! ~50!

z̄5z,

where the barred variables will represent quantities in
inertial frame in the remainder of this section. It is conv
nient to compare variables in the two frames at an instant̄
5t50 at which the two frames are aligned. At this insta
the line element transforms from

ds̄252~ ā2b̄ i b̄ i !d t̄212b̄ idx̄id t̄1ḡ i j dx̄idx̄j

to

ds252$ā2ḡ i j @b̄ i1~VW 3rW ! i #@b̄ j1~VW 3rW ! j #%dt2

12ḡ i j @b̄ i1~VW 3rW ! i #dxjdt1ḡ i j dxidxj ,

where rW[(x,y,z). From this equation, we see that the fo
lowing transformation rules apply att̄ 5t50:

a5ā

b i5b̄ i1~VW 3rW ! i ~51!

g i j 5ḡ i j .

Equation~51! provides the transformation rules for the initi
metric data from the inertial frame~where it is usually de-
rived! to the rotating frame. The only change is the additi
of a new term in the shift. At later times, vectors and tens
in the two frames will also differ by a rotation. However, w
note that at all times there will be some inertial frame, rela
to ( t̄ ,x̄,ȳ,z̄) by a rotation matrix, which has axes aligne
with the rotating frame and whose metric is related to tha
the rotating frame by Eq.~51!. Using the coordinate trans
formations~50! we can derive the relation between all th
fields in both frames, for example,

u05ū0

ui5ūi2~VW 3rW ! i ū0

ui5ūi ~52!
4-7
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v i5 v̄ i2~VW 3rW ! i ,

wherev i is the fluid three-velocityv i[ui /u0. At t5 t̄ 50,
the components of any spatial tensor are unchanged u
this transformation, for example,

g i j 5ḡ i j , ~53!

and equivalently forTi j and Ki j . The relation~53! implies
g i j 5ḡ i j , since the inverse of a tensor is unique, so that
also findKi j 5K̄ i j . To complete our introduction of rotatin
frames in general relativity, we refer the reader to Appen
B, where we show that the Newtonian limit of the relativis
Euler equation with a shift vector of the form of Eq.~51!
reduces to the familiar Newtonian form of the Euler equat
in rotating frames. In Appendix C, we show that the in
grands used to evaluateM, M0, andJ in Eqs.~63!, ~64!, and
~65!, respectively, remain unchanged when expressed
terms of rotating frame variables.

Having transformed into a rotating frame, the field, lap
and shift evolution equations are the same as in the ine
frame, and we evolve them in the same way. We are gua
teed to remain in the rotating frame so long as we set
shift boundary condition in such a way that theVW 3rW piece
of the shift remains.

D. Boundary conditions

We always choose initial data which satisfy maximal sl
ing ~40! and gauge choices which approximately maint
this slicing. Far from the source, Eq.~40! becomes the
Laplace equation, and its solution can be written as a sum
multipole moment fields. In the presence of matter,
source will always have a nonzero monopole moment, so
asymptotic form of the lapse is

a21}r 21. ~54!

All of our spatial gauge choices resemble one another
we will just derive the shift boundary condition for the AMD
shift ~44!, which is the easiest. The three components of
~44! can be decoupled by decomposingb i as in @40#

b i5d j i F7

8
Pi2

1

8
~h ,i1Pk,ix

k!G , ~55!

wherexk are the Cartesian coordinates. Equation~44! then
becomes

¹2Pi5Ji ~56!

¹2h52Jix
i . ~57!

To lowest order,Ji5rv i . We will be studying systems with
azimuthal velocity fields, for whichvz50, and henceh
5Pz50. The lowest nonvanishing moment ofJi , from the
monopole piece ofr, is l 51, m561. We can solve the
Laplace equation~outside the star! assuming asymptotic flat
ness to get the boundary conditionsbx}yr23, by}xr23,
and, to this order,bz50. A nonzero boundary condition fo
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bz must come from a higher-order term, but, sincebz will be
very small, our simulations are insensitive to it. We use

bx}yr23, by}xr23, bz}xyzr27. ~58!

Thebz condition is obtained by ignoringh and solving~56!
subject to the lowest-order moment of theAi j a

, j term in Ji
@see Eq.~45!#.

Note that the coordinate-rotation component of a sh
VW 3rW, is a homogeneous solution of Eq.~44!. It was elimi-
nated in Eq.~58! by assuming that the shift approaches ze
at infinity. When working in a rotating frame, this is not th
case. In such frames, the asymptotic form of the shift isVW

3rW plusa piece which behaves like Eq.~58!, and the bound-
ary conditions must be set accordingly.

V. DIAGNOSTICS

In order to gauge the accuracy of our simulations,
monitor the L2 norms of the violation in the constraint equ
tions. These are the Hamiltonian constraintH ~16!, the mo-
mentum constraintMi ~17!, and theG̃ constraint~18!. We
normalize the Hamiltonian and momentum constraint vio
tion by their L2 norm by

NHC5 I F ~2pc5r!21~D̃ i D̃ ic!21S c

8
R̃D 2

1S c5

8
Ãi j Ã

i j D 2

1S c5

12
K2D 2G1/2I

2

~59!

and

NMC5I H (
i 51

3 F ~8pSi !21S 2

3
D̃ iK D 2

1@c26D̃ j~c6Ãi j !#2G J 1/2I
2

. ~60!

The two terms in theG̃ constraint~18! often vanish individu-
ally, so that a similar normalization is not meaningful for th
constraint.

Related to the Hamiltonian and momentum constraints
mass and angular momentum conservation. In Cartesian
ordinates, the ADM massM and the angular momentumJi

are defined by the behavior of the metric on a closed surf
at asymptotically flat spatial infinity

M5
1

16pEr 5`
Agg img jn~gmn, j2g jn,m!d2Si ~61!

Ji5
1

8p
« i j

k E
r 5`

xjKk
md2Sm . ~62!

Since Eq.~62! is computed at spatial infinity,« i j
k is the flat-

space Levi-Civita tensor. Using Gauss’s law, we transfo
the surface integrals into volume integrals
4-8
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M5E
V
Fe5fS r1

1

16p
Ãi j Ã

i j 2
1

24p
K2D2

1

16p
G̃ i jk G̃ j ik

1
12ef

16p
R̃Gd3x ~63!

Ji5« i j
k E

V
S 1

8p
Ãk

j 1xjSk1
1

12p
xjK ,k

2
1

16p
xj g̃ ,k

lmÃlmDe6fd3x ~64!

~see, for example, Appendix A in@33# for a derivation!. Note
that since« i j

k is outside the integral, it is still the flat-spac
Levi-Civita tensor. Baryon conservation (r0um) ;m50 im-
plies that the rest mass

M05E r!d3x ~65!

is also conserved. Due to the finite differencing in our h
drodynamic scheme,M0 is conserved identically except fo
matter flow off the computational grid. We therefore monit
M0 only as a diagnostic of how much matter flows throu
the outer boundaries.

Equations.~63! and ~64! are only valid in asymptotically
flat spatial hypersurfaces and thus are not suited for us
rotating reference frames. However, the problem can be s
stepped quite easily by calculating the mass and angular
mentum in the inertial frame, as functions of the dynami
variables of the rotating frame. In Appendix C we show th
the integrals for these conserved quantities are exactly
same when expressed in terms of the rotating frame fiel

Another useful quantity to monitor is the circulation. A
cording to the Kelvin-Helmholtz theorem@43#, the relativis-
tic circulation

C~c!5 R
c
humlmds ~66!

is conserved in isentropic flow along an arbitrary clos
curvec when evaluated on hypersurfaces of constant pro
time. Hereh511«1P/r is the specific enthalpy,s is a
parameter which labels points onc, and lm is the tangent
vector to the curvec. SinceC(c) is only conserved for isen
tropic flow, checking conservation of circulation along a fe
curves will measure the importance of numerical and ar
cial viscosity on an evolution. We do not monitor circulatio
in this paper, although such a check has been impleme
elsewhere@44#.

Finally, we check for the existence of apparent horizo
using the apparent horizon finder described in@45#.

VI. NUMERICAL CODE DESCRIPTION

All our algorithms have been implemented in a parall
distributed-memory environment usingDAGH software@46#
developed as part of the Binary Black Hole Grand Challen
Alliance. When we need to solve elliptic equations~to con-
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struct initial data or to impose elliptic gauge conditions!, we
use the computational toolkit PETSc@47#.

Due to our large number of variables, the memory nee
by our code is considerable~for example, a run with 643

spatial zones may require up to 2 Gbytes of memory!. Thus,
it is crucial that we exploit any symmetries present in a giv
problem to minimize the number of grid points needed. W
have implemented reflection symmetry across a coordin
plane~equatorial symmetry! and reflection symmetry acros
three coordinate planes~octant symmetry!, which cut the size
of our grids by factors of two and eight. Our code also allo
us to enforcep symmetry, which assumes symmetry unde
rotation of p radians about a given axis. Unlike equator
and octant symmetry, the implementation ofp symmetry is
not trivial on distributed-memory parallel systems. This
because grid points needed to generate the proper boun
conditions at a given location of the outer grid boundary w
usually be located in the memory of a different processor
seen in the diagram of Fig. 2 where the value of the field
the white circle needed by pointP in processor 4 must be
provided by a black circle on processor number 3. We
this problem by creating a two-dimensional array for ea
field that stores the values of the field on all the grid poi
outside the boundary~white circles! needed to calculate th
derivatives of the field at the grid points at the boundar
~first row of black points!. Each processor is responsible f
updating the array values corresponding to grid points wit
its domain by ap-radian rotation. Updated values are broa
cast via MPI, and each processor has a copy of the comp
two-dimensional array from which to draw the correspon
ing boundary values.

VII. TESTS

A. Vacuum code tests

The algorithm for evolving the field equations was fir
tested in the context of small amplitude gravitational wav
@28#. With harmonic slicing, the system could be accurat
evolved for over 100 light crossing times without any sign

FIG. 2. This diagram shows how our code implementsp sym-
metry in distributed-memory computer clusters. The black circ
correspond to grid points, and the bottom row corresponds to
boundary in the plane orthogonal to the rotation axis. The wh
circles represent the ghost zones needed by our second order
difference stencil. The arrow connects two points that are relate
the presence ofp symmetry.
4-9
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instability. The results also showed second-order con
gence to the analytic solution when resolution was increa
It has also been demonstrated@33# that this same code ca
stably evolve isolated black holes, with and without rotatio
in Kerr-Schild coordinates.

B. Hydro-without-hydro approach

Next, it was demonstrated that this field evolution sche
is stable when predetermined matter sources are present@48#.
This was done by inserting the matter sources from kno
solutions of the Einstein equations and then evolving
gravitational field equations. Using this ‘‘hydro-withou
hydro’’ approach,@48# evolved the Oppenheimer-Volkoff so
lution for static stars without encountering any instabili
and the Oppenheimer-Snyder solution for collapse of hom
geneous dust spheres well past horizon formation. The s
hydro-without-hydro approach was later used to model
quasi-equilibrium inspiral of binary neutron star systems a
calculate the complete late-inspiral gravitational wavetr
outside the ISCO@49,50#.

C. Shock tube

Every hydrodynamic algorithm must demonstrate so
ability to handle shocks. In Fig. 3, we compare the outpu
our code for a simple one-dimensional shock tube prob
with the exact result, which is known analytically in spec
relativity @51#. In order to compare with this result, the me
ric functions are held at their Minkowski values througho
this test. Att50, we setv[vx50 everywhere. Forx,0 we
setr0515, P5225 initially, and forx.0 we setr051, P
51. We output data att50.5. In Figure 1, we use artificia
viscosity parametersCQvis51, CLvis50 ~see Sec. III C! and
a grid with 400 points. The shock is resolved quite well, a
the only disturbing feature of our results is the ‘‘overshoo
in variables at the rarefaction wave. Norman and Wink
@52# have shown that these overshoots are present in
solution to the finite difference equations of artificial visco
ity schemes even in the limit of the grid spacing going
zero. This problem therefore represents a fundamental l

FIG. 3. The one-dimensional relativistic Riemann shock tu
test. We plot the numerical rest densityr0 ~triangles!, pressureP
~squares!, and velocityv ~crosses! at t50.5. Solid curves show the
analytic values. This particular run usedCQvis51.
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tation of artificial viscosity schemes, and points to the ne
for more sophisticated high-resolution-shock-capturing te
niques when strong shocks are present~see, e.g.,@26#!. How-
ever, for many of our astrophysical applications~e.g. binary
inspiral! we anticipate at most very weak shocks, so that
use of artificial viscosity schemes is adequate.

Our results are completely insensitive toCQvis when it is
within the range 0–0.1. We find the optimal behavior arou
CQvis'1, at which point the effects of artificial viscosity ar
small but noticeable. ForCQvis'5 or greater, the viscosity is
too large, and we are unable to evolve accurately.

Note that in the above exampler!.1022r!max every-
where, soe!-limiting ~36! is never used. More extrem
shocks can be created by increasing the density ratior0(x
.0)/r0(x,0). We find that we can treat shocks reasona
accurately for ratios of up to about 20.

D. Oppenheimer-Snyder dust collapse

As a second simulation which can be tested against e
results, we model the Oppenheimer-Snyder~OS! collapse of
a homogeneous dust sphere to a black hole@53#. The analytic
solution for OS collapse can be transformed into maxim
slicing and isotropic coordinates following@54#. We use the
analytic solution att50, when the matter is at rest, as initi
data for all variables. We then evolve the gravitational a
hydrodynamic fields with our 311 code and compare th
result with the exact solution. At each time step, we det
mine the lapse by solving the maximal slicing condition fro
the fields on our 3D grid. For the shift we insert the analy
values corresponding to isotropic coordinates. We evolve
a 323 grid and a 643 grid, utilizing octant symmetry to trea
only the upper octant. Our outer boundaries are placed atM
in the isotropic coordinates of our grid. The initial Schwarz
child radius of the dust sphere is 3M .

In Fig. 4 we show the convergence of the central conf
mal exponentfc to the exact value. In Fig. 5 we compare th
density profiles at several times for the 643 grid to their

e
FIG. 4. The evolution of the conformal exponent at the orig

fc and the ADM massM during Oppenheimer-Snyder collaps
The deviation offc from its analytic valuefc

anal is measured by
Dfc5(fc2fc

anal)/(fc1fc
anal). This is plotted on the top panel. O

the bottom panel, we plot the ADM mass of the system and
irreducible mass of black hole, given by the area of the appa
horizon. We compare runs at two different resolutions.
4-10
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analytical values. Throughout the evolution, we search
apparent horizons. Att58.75M , we locate an apparent ho
rizon with irreducible massMAH /M51.03. ~See Fig. 4.!
This mass remains constant to within 3% until the end of
simulation ('3M later!. As is known analytically, all of the
mass falls inside the black hole.

This test is similar to the ‘‘hydro-without-hydro’
Oppenheimer-Snyder test performed on our code in@48#, ex-
cept that here the matter fields and the lapse are determ
numerically rather than set to their analytic values.

VIII. SINGLE STARS

In this section we study isolated stars, both non-rotat
and rotating. The initial data, constructed from t
Oppenheimer-Volkoff~OV! solution for non-rotating equilib-
rium stars and with the code of@55# for equilibrium rotating
stars, are summarized in Table I~see also Fig. 6.! We use the
same coordinates as used in@55# ~except transformed from
spherical to Cartesian!. For spherical, non-rotating system
~OV stars!, these are the familiar isotropic coordinates.

FIG. 5. The density, defined by Eq.~7! as a function of isotropic
radius during Oppenheimer-Snyder collapse. We compare our
merical results~crosses! with the analytic profiles.

TABLE I. Isolated equilibrium star configurations (G52).

Star Ma M0
b Req

c Rc
d J/M2 e T/uWu f Vc /Veq

g Rpe
h

A 0.157 0.171 0.700 0.866 0.00 0.000 1.0
B 0.162 0.178 0.540 0.714 0.00 0.000 1.0
C 0.170 0.186 0.697 0.881 0.35 0.032 1.00 0.
D 0.171 0.187 0.596 0.780 0.34 0.031 1.00 0.
E 0.279 0.304 1.251 1.613 1.02 0.230 2.44 0.
F 0.049 0.050 1.240 1.290 0.72 0.053 5.88 0.

aADM mass.
bRest~baryonic! mass.
cCoordinate equatorial radius.
dAreal radius at the equator.
eRatio of angular momentum toM2.
fRatio of kinetic to gravitational potential energy.
gRatio of central to equatorial angular velocity.
hRatio of polar to equatorial coordinate radius.
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these coordinates, the 3-metric for stationary spherical s
is conformally flat, and the event horizon of a Schwarzsch
black hole is located atr 50.5M . All stars aren51, G52
polytropes@see Eq.~23!#, and are dynamically evolved with
the gamma-law equation of state~22!. The nondimensiona
units throughout are set by requiringk5G5c51.

A. Static stars

The stability properties of non-rotatingG52 polytropes
are known analytically and can be used as a test of our c
We use the OV@56# solution describing equilibrium poly-
tropes in spherical symmetry as initial data, and evolve
matter and fields dynamically. An OV star is characterized
one parameter, which can be taken to be the central
densityrc . ~We will henceforth drop the subscript ‘‘0’’ on
the rest density when referring to central rest density.! Along
the sequence of increasingrc , the massM takes a maximum
value Mmax at a critical central densityrc

crit . ~See Fig. 6.!
Stars withrc,rc

crit are dynamically stable, while stars wit
rc.rc

crit are unstable and collapse to black holes on a
namical timescale. The dynamical timescale is given by
free-fall timerc

21/2. To verify that our code can distinguis
stable and unstable configurations we evolve two very si
lar models on either side of the critical point atrc

crit .
In our units,rc

crit50.32 andMmax50.164. Star A has an
initial central rest densityrci50.2 and is therefore stable. W
set our outer boundaries atx,y,z52 and evolve this star with
three different resolutions 163, 323, and 643, once again uti-
lizing octant symmetry. In Fig. 7 we show the central dens
evolution for the three resolutions using harmonic slici
and the Gamma-driver shift. We see that our code does c
verge to the exact~stationary! solution. There are three
sources of the deviations from exact second-order con
gence~see also@48#!. First, there are components of the err
which scale with a higher power of the grid width~e.g.
Dx3). Second, there is the noise caused by discontinuitie
the surface of the star. Finally, errors are generated by
posing outer boundary conditions at finite distance.

u-
FIG. 6. Stars A, B, C, and D and the constant-J sequences on

which they lie. Open circles represent stable configurations,
closed circles denote unstable configurations.
4-11
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In Fig. 8 we evolve on a 323 grid with several gauge
choices. Already we see that the choice of gauge is imp
tant. Even in this static case, where the shift in the OV so
tion vanishes, it is necessary to use a dynamic shift for lo
term stability. With the Gamma-driver, we evolve totrc

1/2

550 (t/M5712) and never encounter an instability.
We have stably evolved star A on the 323 grid for many

fundamental radial oscillation periods, which have a per
of about t r57rc

21/2 @17#. However, we find that high-
frequency, high-amplitude oscillations appear inrc after a
few periods and persist thereafter. The onset of these o
lations can be delayed and their amplitude diminished
increasing grid resolution. They can be removed altoge
by making the hydrodynamic algorithm more implicit, i.e. b
increasing the weight on the new time step in the correc
step~see section III B!. This adversely affects our ability to
handle shocks, though. The problem may also be resolve
the use of a more sophisticated hydrodynamics scheme~see,
e.g., @26,27#!. For the less relativistic stellar model used
@26,27# our code produces non-physical high-frequency
cillations after about 6 radial oscillation periodst r . For the

FIG. 7. Fractional change in the central rest density of sta
when evolved on grids of three different resolutions.

FIG. 8. Star A evolved on a 323 grid using various gauge
choices. Here ‘‘hm’’ refers to harmonic lapse, ‘‘Kdr’’ toK-driver
lapse, ‘‘fz’’ to frozen shift, and ‘‘Gdr’’ to Gamma-driver shift.
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applications discussed here, these late-time problems are
relevant.

Star B has an initial central density ofrci50.4 and is
dynamically unstable. We evolve this star with harmon
lapse and frozen shift, imposing outer boundaries at 1.2M,
on two different grids (323 and 643). In Fig 9 we plot the
central density and lapse as a function of time. The colla
is induced solely by the perturbations caused by putting
star on a discrete grid. Since these perturbations bec
smaller as grid resolution is increased, it is not surprising t
the star on the lower-resolution grid collapses before the
on the higher-resolution grid. Since both collapse, it appe
that 323 zones are sufficient to distinguish stable from u
stable stars. Eventually, the star collapses to a point at w
there are too few grid points across the star’s diameter for
evolution to remain accurate. We terminate our evolutio
when the error in the ADM mass exceeds 15% of the origi
mass. The 323 grid turns out to be too coarse for an appare
horizon to be located. We do locate an apparent horizon
the 643 run shortly before the simulation is terminated. A
this point the central lapse has collapsed toac50.05, and, as
a measure of error, the ADM mass deviates by 10% from
initial value. The horizon mass agrees well with the AD
massM'MAH .

Also included in Fig. 9 is a 643 simulation using harmonic
lapse and the Gamma-driver. Similar behavior is seen
these coordinates. We will investigate the performance
various gauge choices in more detail in the following se
tion.

B. Uniformly rotating stars

1. Inertial frame

Simulations of systems with non-zero angular moment
are very sensitive to the choice of coordinates, which ma
them very good test cases for comparing the numerical
havior of different gauges and slicings. Most of these effe
can be seen when we evolve uniformly rotating stars.

We consider two uniformly rotating stars, stars C and
on one constant angular momentum sequenceJ50.01 ~see

A FIG. 9. The collapse of star B seen with various gauge choic
The abbreviations are the same as in Fig. 8.
4-12
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Fig. 6!. The J50.01 sequence has a turning point atrc
crit

50.4, Mmax50.172. For a sequence of uniformly rotatin
stars, this turning point marks the onset of secular, not
namical, radial instability@57#. It is possible for a star on the
secularly unstable branch to be stabilized temporarily if
star begins to rotate differentially, so that no instability w
develop on a dynamical timescale. However, prior numer
studies@24# have found the point of onset of dynamical i
stability to be very close to the point of onset of secu
instability, which we confirm with our simulations here.

We again pick two similar stars on either side of the on
of secular instability: star C withrci50.3 on the stable
branch and star D withrci50.5 on the unstable branch. W
dynamically evolve these two stars with different choices
the slicing and gauge. All simulations are performed on
3322 grids, utilizing equatorial andp symmetry to evolve
only half of a hemisphere. The outer boundaries are place
@21.5,1.5#3@0,1.5#2. There are now two relevant tim
scales—the free-fall timet f f;rc

21/2 and the orbital period
P—and a reliable code must be able to stably evolve sta
rotating stars for several of both time scales.

Results for star C witht f f51.83 andP526.38 in our
units, are plotted in Figs. 10 and 11. In Fig. 10 we comp
the evolution for maximal slicing~40!, harmonic slicing~42!
and theK-driver ~41!, all with the Gamma-driver shift con
dition ~49!. We find that there is little sensitivity to the laps
choice except for small oscillations inJ which are only
present with harmonic slicing.

In Fig. 11 where we compare the frozen shift conditi
~43!, the AMD shift ~44! and the Gamma driver~49!, all
evolved with theK-driver ~41! for the lapse. This compariso
demonstrates the great importance of choosing an appr
ate shift condition for controllingG̃ i . AMD is dramatically
better than frozen shift in this regard, and the Gamma dr
is dramatically better than AMD. The behavior with AMD
shift does not change significantly when the criteria for co
vergence of Eq.~44! is made stricter. Note that the modifi
cation ~46! to AMD and the Gamma-driver is not activate
for this application.

FIG. 10. Star C evolved on a 643322 grid with the Gamma-
driver shift condition and various lapse choices.
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Figures 12 and 13 show the behavior of the radially u
stable star D under different coordinate choices. Once ag
perturbations are induced solely by the finite difference er
of the grid. We terminate simulations when mass conser
tion is violated by 10% or the code crashes. The singula
avoidance property of theK-driver, which approximates
maximal slicing, is manifest: with the lapse collapsing
very small values, the proper time between time slices at
star’s center becomes very small, which effective
‘‘freezes’’ all quantities there. With harmonic slicing,a de-
creases more slowly, and we are able to reach higher ce
densities, corresponding to later proper times, before
code crashes. Given their qualitatively different behavior
is difficult to compare meaningfully the different laps

FIG. 11. Star C evolved on a 643322 grid with K-driver lapse
and various shift choices. We plot the maximum value of the ab

lute value ofG̃x on the grid to show the dependence ofG̃ i on spatial
gauge.

FIG. 12. The evolution of the central rest density and the AD
mass as star D collapses.
4-13
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choices for this scenario. If one wants to see the cen
region reach the farthest stage of collapse before violatio
mass conservation becomes unacceptable, harmonic
and Gamma-driver shift seem to be the optimal combinat
One possible reason for this is the behavior offc , the con-
formal exponent at the stellar center. For the gauge cho
which are best suited to probing the central region,fc de-
creases significantly from its initial value. Inverting Shibata
reasoning for modifying the AMD gauge, we infer that th
corresponds to choosing a gauge with infalling coordina
This effectively increases the grid coverage of the collaps
star, resulting in a more accurate evolution.

We are only able to locate an apparent horizon in
harmonic lapse and Gamma driver simulation, and only
the last few time steps, at which pointac50.05, MAH /M
50.58, and the error in ADM mass is about 2%. It see
that 643322 zones are barely sufficient resolution for loca
ing horizons for rotating stars reliably.

FIG. 14. The central density and angular momentum of sta
evolved on a 643322 grid with K-driver lapse and Gamma-drive
shift in the inertial and in the rotating frame. We see thatJ is
conserved much better in the rotating frame.

FIG. 13. The evolution of the lapse and conformal exponen
the origin as star D collapses.
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2. Rotating frame

We compare results for uniformly rotating star C in th
inertial frame to results in the corotating frame in Fig. 14.
the corotating frame,v i50 at t50. The light cylinder,
where points of fixed coordinate label are moving on n
paths, is atr cyl54.2, well outside our outer boundaries
x,y,z51.5. All coordinate observers are therefore timeli
everywhere on our grid. We see a dramatic improvemen
angular momentum conservation in the corotating fram
This indicates that the loss ofJ in the inertial frame is caused
by error in the advection of fluid quantities alongv i . Mass
conservation is also better in the rotating frame, but not d
matically. Other quantities show qualitatively the same b
havior in both frames. We have redone the evolution of c
lapsing star D with harmonic lapse and Gamma-driver s
in the corotating frame, and our results were almost ident
to those in the inertial frame.

C. Differentially rotating stars

We now test the ability of our code to handle different
rotation. Differential rotation in neutron stars is relevant
several important astrophysical phenomena. Simulation
both Newtonian hydrodynamics@58# and full general relativ-
ity @21,22# indicate that binary neutron star coalescence m
well lead, at least temporarily, to a differentially rotatin
remnant, which can support significantly more rest mass t
uniformly rotating stars@23#. Core collapse in a supernov
may also result in a differentially rotating neutron star.

We construct axisymmetric equilibrium initial data, aga
following @55#, with z chosen as the axis of symmetry. F
the rotation profile, we choose

utuf5Req
2 A2~Vc2V! ~67!

whereV is the angular velocity of the fluid,Vc is the value
of V on the rotation axis,Req is the equatorial coordinate
radius, andA is a parameter that measures, in units ofReq,
the scale over whichV changes. In the Newtonian limit thi
profile reduces to

V5
A2Vc

~x21y2!/Req
2 1A2

. ~68!

For A→` one recovers uniform rotation.
In Fig. 15 we present results for star E withrmax50.07,

A2151, Req/M54.48,T/uWu50.23, andJ/M251.02. This
star’s rest mass ofM050.304 exceeds the maximum allowe
rest mass of non-rotatingG52 polytropes by 70%. We
evolve this star on a 643322 grid, usingp symmetry, with
outer boundaries at@22,2#3@0,2#2. The same star was
evolved dynamically by@23#, and we confirm their finding
that the star is stable over several central rotation period

We found that simulations of differentially rotating sta
are very sensitive tests of hydrodynamic advection schem
In particular, when we used time averaging instead of Cra
Nicholson time centering to treat the advection terms~see
Appendix A!, we found that the angular momentum is co
served very poorly. The decrease inJ also causes the centra
density to rise, and the numerical model to drift further a

C

t

4-14
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HYDRODYNAMIC SIMULATIONS IN 3 11 GENERAL . . . PHYSICAL REVIEW D 67, 024004 ~2003!
further from the true solution. This suggests that for diff
ential rotation, the ability to successfully conserve angu
momentum depends strongly on the finite difference al
rithm used for the hydrodynamics.

In Fig. 16 we show results for star E, withrmax
50.0174, A2153, Req/M526.3, T/uWu50.0528, and
J/M250.715. This model is identical to star I in Table II o
@59#, where this star was evolved in axisymmetry. Star F
radially stable, but, as in@59#, we make the situation dy
namic by depleting pressure from the star by artificially
ducing the polytropic constantk ~which requires us to re
solve the Hamiltonian and momentum constraint!.
Removing pressure support causes the star to implode.
small depletion factors, this collapse is halted and the
bounces and finds a new, more compact, stable equilibr
configuration. Whenk is reduced to a low enough value, th

FIG. 15. Star E evolved for 4 central periods on a 643322 grid.
The M andJ curves overlap.

FIG. 16. The evolution of star F with 0%, 90%, and 99.9% of
pressure removed, respectively. When no pressure is removed
star is stationary. When 90% is removed, we evolve until the n
equilibrium is reached. When 99.9% is removed, the star collap
from an initial radius of 26M to a radius of;5M , at which point
the simulation becomes inaccurate, and we terminate it.
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star will collapse to a black hole. Thus, there is a critic
polytropic constantkcrit separating these two outcomes.
@59#, this critical value was found to bekcrit'0.04.

We evolve star F on a grid of 642332 zones, with the
outer boundaries located at 2, or equivalently 40.8M . In this
simulation we use only equatorial symmetry so that no
p-symmetric perturbations can grow. We evolve three diff
ent cases; one without pressure depletion withk51, a su-
percritical case withk50.1.kcrit , and a subcritical case
with k50.001,kcrit . Both the second and third case prese
unique challenges. In the second case, the collapse is h
by a strong shock which must be handled accurately. In
third case, we must follow the collapse from a radius
26.3M to a radius of'M . Our results are consistent wit
those of@59#, even though our 3D simulations have a mu
poorer resolution than the axisymmetric simulations of@59#.
In particular, our resolution is insufficient to follow the fina
stages of thek50.001 collapse and prove that a black hole
formed.

In order to overcome this problem, we redo thek
50.001 collapse on a 1002350 grid. This grid is still too
sparse to resolve a black hole with radius of approximat
1M if the outer boundaries are imposed at 40.8M . In order
to resolve the black hole, we rezone our grid several tim
during the implosion, halving the boundaries and halving
grid spacing, so that the total number of grid points rema
constant~compare@60#.! We present results for a simulatio
that was carried out on four different grids with outer boun
aries at 2, 1, 0.5 and 0.25. We use theK-driver and the
Gamma-driver without the modification~46!. With the modi-
fication, the functionsG̃ i grow very rapidly and cause th
code to crash well before the radius reachesM. Turning off
the modification means thatfc will grow, and the coordi-
nates will blow outward. We count on the grid rezoning
counter this effect. Also, we switch to frozen shift on the la
and finest grid of the evolution. The Gamma-driver does
perform well on this segment, perhaps because the
boundaries have been moved in to a point where the s
does not have its asymptotic form~58!.

the
w
es

FIG. 17. The evolution of star F with 99.9% of its pressu
removed. This time, we evolve on a 1002350 grid. The points mark
times when the resolution was doubled.
4-15
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DUEZ et al. PHYSICAL REVIEW D 67, 024004 ~2003!
The results of this simulation are shown in Figs. 17 a
18. M and J remain within 10% of their initial values
throughout~we terminate the calculation when this ceases
be true.! In our coordinates, the equatorial radius decrea
from 1.24 (25.3M ) to 0.04 (0.8M ). Sincefc is growing,
part of this decrease in radius is a coordinate effect. T
coordinate-independent circumferential radius at the equ
~computed fromgff) decreases from 27M to 1.7M . At
trc

1/250.98, we locate an apparent horizon with surface a
A5 0.0804 corresponding to an ‘‘irreducible’’ mass
(A/16p2)1/250.8M . Is this a reasonable value? The ex
tence of rotation and of mass outside of the black hole me
that we can no longer expect the irreducible mass of the h
to be equal to the ADM mass of the entire system. The a
of the event horizon of a Kerr black hole with this system
total M and J would beA50.109. By breaking up the res
mass integral into pieces inside and outside the horizon,
find that 82% of the baryonic mass is inside the appar
horizon. If we assume that the values ofM andJ/M for the
black hole are 82% of those of the total system, we arrive
the very crude estimateA50.0732, which is within 10% of
the value determined from the apparent horizon. We ter
nate our simulation 2.5M after the horizon is located, durin
which time its area does not change appreciably.

Our agreement with@59# indicates that nonaxisymmetri
perturbations are not important in the collapse of this s
We confirm this in Fig. 18. As one can see, the density p
files remain axisymmetric throughout.

FIG. 18. Snapshots of the rest density contour lines forr0 and
the velocity field (vx,vy) in the equatorial plane for a simulation o
the collapse of star F withk50.001. The contour lines are draw
for r05102(0.2 j 10.1)r0

Max , wherer0
Max denotes the instantaneou

maximum value ofr0 for j 50,1, . . . ,7. Vectors indicate the loca
velocity field, v i . The thick circle on the last frame marks the a
parent horizon.
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IX. BINARY SYSTEMS

Binary neutron stars are among the most promis
sources of gravitational radiation for the new generation
gravitational wave interferometers. This makes the numer
simulation of such systems one of the most important go
of a fully relativistic hydrodynamics code and provides o
of the most demanding tests for any such code. A bin
system allows us to uncover potential problems that may
be evident in axisymmetric scenarios. Previous simulati
have focused on the coalescence and merger of binary
tron stars@21,22#. In this section we demonstrate that o
code can stably evolve binaries in stable, quasi-circular
bits for over two periods~compare@17#!.

As initial data for these simulations we adopt the data
@61,62#, describing two equal mass polytropes in co-rotatin
quasi-circular orbit. These data have been constructed u
the conformal ‘‘thin-sandwich’’ decomposition of the con
straint equations@11–13,63,64# together with maximal slic-
ing and spatial conformal flatness.

In this section we focus on one particular case and p
pone a more complete presentation for a forthcoming pa
@30#. We model the neutron stars asG52 polytropes with an
individual rest mass ofM0

ind50.1 in our nondimensiona
units ~recall that the polytropic indexk is set to unity!. At
infinite separation, this corresponds to an individual grav
tional mass ofM`

ind50.096. The compaction of (M ind/R)`

50.088 implies that the gravitational fields are moderat
relativistic@the maximum compaction forG52 polytropes is
(M ind/R)`50.21]. We adopt initial data for a binary separ
tion of za50.3, whereza is the ratio between the coordina
separation from the center of mass to the nearest point on
star’s surface to the farthest point~see@61,62#!, meaning that
the separation between the stellar surfaces is about 86%
stellar diameter. This separation is well outside the innerm
stable circular orbit~ISCO! as determined by the analysis o
initial data sets~see@65#!. At this separation, the total binar
ADM mass isM50.19 and the total angular momentum
J/M251.36.

We evolve these initial data on three different grids. Tw
‘‘small grid’’ simulations are evolved on 1203602 grid
points, with a resolution ofDx5Dy5Dz50.55M ~the bi-
nary is symmetric across the equatorial plane, and, for eq
mass stars,p-rotation symmetric around the center of mas!.
The individual stars are resolved by'16 grid points across
the stellar diameter~compare@22# where much larger grids
are used!. One of these small grid evolutions is performed
the inertial frame, the other in a rotating frame. On the
small ~uniform! grids, the outer boundaries are imposed ve
close to the stars~at a separation of two stellar diameters!,
which we found to introduce numerical noise. We therefo
repeated these simulations on a ‘‘large grid,’’ performed in
rotating frame, where we doubled the number of grid poi
and the separation to the outer boundary, while keeping
grid resolution constant. This corresponds to a numer
grid covering a cube in the domain@266,66# in each direc-
tion, in the units of Fig. 19. The size of this grid is such th
the corner points almost ‘‘touch’’ the surface of the lig
cylinder, the cylinder with coordinate radiusRL51/V,
4-16
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whereV is the rotating frame angular frequency. The pos
bility of evolution in rotating frames with grids that exten
beyond the light cylinder will be studied in a future article

We used Courant factors of 0.30 and 0.46 for the sm
and large grid runs, respectively, resulting in about 3000 t
steps per orbit for the latter case. We adopt theK-driver ~41!
for the lapse~using e50.625, c50.1, and 5 substeps pe
step! and the Gamma-driver~49! for the shift ~using h
50.2, k50.005 and 10 substeps!. We used Sommerfeld typ
boundary conditions for the gravitational fields~see Sec.
II D ! andCopy type for the hydrodynamical fields~see Sec.
III E !. For the artificial viscosity we usedCQvis50.1 and
CLvis50 ~see Sec. III C!. We also usedcH50.050DT in Eq.
~19!. For the small, rotating frame grid, this choice led to t
code crashing after about a period and a half. However,
found that restarting the code just before that withcH
50.024DT allowed us to continue the evolution. For th

FIG. 19. Snapshots in a rotating coordinate frame of the
density contour lines and the velocity field in the equatorial pla
for a simulation of a corotating binary. The contour lines are dra
for r05102(0.2j 10.1)r0i

Max , wherer0i
Max denotes the maximum valu

of the rest densityr0 at t50 ~here it is 0.0573), for j
50,1, . . . ,7. Vectors indicate the local velocity field and the sca
is as shown in the top left-hand frame. The stars are orbiting clo
wise in theinertial reference frame with an initial coordinate velo
ity of 0.102c. P denotes the initial orbital period.
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large grid, no such adjustment was necessary. For both s
grid simulations we found that the stars quickly drift apa
To compensate for this we reduced the orbital angular ve
ity V by 2% for these two cases. Again, no such adjustm
was required for the large grid.

In Fig. 19 we show contour plots of the rest densityr0 at
half period intervals for the large grid simulation in the r
tating frame. The three-velocity of the fluid is represented
the arrows. The fact that the different panels look alm
identical indicates how well the binary remains in its circu
orbit.

Imposing the outer boundaries at smaller separations
were unable to keep the binary in circular orbit. In Fig.
we plot the coordinate separationd between the two points
of maximum density for all three simulations as a function
time @66#. For the small grid in the inertial frame, the tw
stars start to drift apart after a very short time. When p
forming the same simulation in a rotating frame, the st
remained in binary orbit for about two periods, but ul
mately merge. This merger is triggered by the developm
of orbital eccentricity. When we compare this small grid r
with the large grid simulation, we see that the eccentricity
greatly reduced@67#. This result seems to validate the qua
equilibrium approach to obtaining reasonable initial data
corotating neutron star binaries in circular equilibrium a
underlies the importance of the boundary proximity effect
these simulations.

We show more diagnostics of these runs in Figs.
through 25. In Fig. 21 we show the rest massM0, gravita-
tional massM, and angular momentumJ for the three differ-
ent simulations. The use of a rotating frame, which mi
mizes fluid advection through the numerical grid, leads
large improvements, especially in the conservation of an
lar momentum. Close outer boundaries lead to consider
numerical error. The system loses mass and angular mom
tum through the emission of gravitational radiation, but a
rate that should lead to smaller deviations than we find in
simulations. The maximum variation of the rest mass, gra

st
e
n

k-

FIG. 20. Evolution of the coordinate separation between
maximum rest mass density points of the two stars in the bin
system shown in Fig. 19. The time is given as a fraction of
initial orbital period and the separationd as a fraction of the initial
valuedi .
4-17
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tational mass, and angular momentum for the large grid
over the first two orbits was 0.3%, 0.3%, and 2.2%, resp
tively.

In Fig. 22 we show the maximum rest densityr0 and the
minimum value of the lapsea as functions of time. The
small oscillations correspond to the fundamental mode of
individual neutron stars, which are induced by the truncat
error of the finite grid resolution. The period of the oscill
tions P;16.6 agrees well with the theoretical value oft
516.0 ~see Fig. 32 in@17#!. These oscillations are no
damped, since for these runs we switched off the linear
cosity terms (CLvis50).

We monitor the Hamiltonian~16!, momentum~17!, andG̃
~18! constraints in Figs. 23-25. We show the L2 norms of
corresponding constraint violations. For the Hamiltonian a
momentum constraint, these violations are normalized w
respect toNHC andNMC evaluated att50 @see Eqs.~59! and
~60!#. In Fig. 24 we show the small-grid rotating-frame res
for the Hamiltonian constraint violation~solid line!, as well
as the result from a similar small-grid evolution in which w
set cH50 ~dashed line! @68#. The difference between thes
two lines illustrates the effect of the addition of this partic
lar term in Eq.~19! on the conservation of the Hamiltonia

FIG. 21. Rest mass, gravitational mass, and angular momen
for the three simulations depicted in Fig. 20 .

FIG. 22. Maximum rest mass densityr0 ~top! and minimum
lapse function a ~bottom! for the large grid, rotating frame
simulation.
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constraint. The constraint deviationsG i , which are particu-
larly sensitive to the choice of spatial gauge, remain w
behaved during the first two orbits in these evolutions w
the Gamma-driver.

As this example demonstrates, our code is able to sta
evolve binaries in stable, quasi-circular orbits for over tw
orbital periods. In a forthcoming paper@30# we will use this
code to systematically study binary sequences, both to
namically locate the ISCO and to test how accurately c
rently available quasi-equilibrium initial data represent bin
ries in quasi-circular orbit.

X. SUMMARY

We have tested our 311 relativistic hydrodynamics code
on a variety of problems. We find that our current algorith
supplemented by driver gauge conditions, is rather rob
The grid resources required for stable evolution and reas
able accuracy are modest. We accurately evolve shock tu
spherical dust collapse, and relativistic spherical polytrop
We also evolved uniformly and differentially rotating equ
librium polytropes, and maintained stable configurations s
tionary for several rotational periods. Two applications c
ried out with our code are particularly significant. First, w
examined the collapse from a large radius of a star w

m

FIG. 23. L2 norms of the Hamiltonian constraintH ~top! and
momentum constraintsM i ~bottom! for the large grid, rotating
frame simulation. All the curves have been normalized as explai
in Sec. IX.

FIG. 24. L2 norms of the Hamiltonian constraintH for small
grid, rotating frame simulations, usingcH50.05DT ~solid curve!
andcH50.00 ~dashed curve!. This plot shows the effect of thecH

term in Eq.~19! on the conservation of the Hamiltonian constrain
4-18
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significant spin to a Kerr black hole. Second, we evolv
stable binary neutron stars for several orbits, maintain
quasi-circular equilibrium. The first application indicates th
we can study the effects of angular momentum on grav
tional collapse and on the resulting waveform, an effort
ready initiated in@59#. The second application indicates th
we can identify and evolve dynamically stable quasi-circu
neutron star binaries. This ability can be used to locate
ISCO dynamically and to follow the transition from an in
spiral to a plunge trajectory. In addition, dynamic simulati
allows us to improve binary initial data, for example by a
lowing initial ‘‘junk’’ gravitational radiation to propagate
away. We also hope to compute detailed gravitational wa
forms form these binaries, refining the wavetrains reporte
@49,50#.

We note that several challenges remain to be addre
before there exists a code capable of modeling all the gr
tational wave sources of current astrophysical interest. O
problem is the need to maintain adequate grid coverag
the collapsing star or inspiralling binary while still keepin
the outer boundaries sufficiently distant, i.e. the problem
dynamic range. Adaptive mesh techniques far more soph
cated than the crude rezoning used here may be necessa
related problem concerns gravitational wave extraction, a
currently is not possible to place outer boundaries in
wave zone. Finally, the formation of black hole singulariti
in hydrodynamic collapse scenarios remains an additio
challenge to determining the late-term behavior of such s
tems. Special singularity-handling techniques, such as e
sion, need to be developed further.
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FIG. 25. L2 norm of theG̃ constraintG i for the large grid,
rotating frame simulation.
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APPENDIX A: TREATMENT OF ADVECTIVE TERMS IN
THE HYDRODYNAMIC EQUATIONS

Solving Eqs.~26!–~28! requires solving equations of th
form

]q

]t
1

]~qv !

]x
5S. ~A1!

Let us finite difference this equation. Letqi
n be the value ofq

at grid point i on time leveln. Let Dx be the coordinate
distance between neighboring grid points, andDT be the
time step. The Courant factor isC5DT/Dx. Then we differ-
ence~A1!, say for the predictor step, as

qi
n115qi

n1DT@~v i 21/2
n qi 21/2

n 2v i 11/2
n qi 11/2

n !1Si
n#

~A2!

where

v i 11/2
n 5

r! i
n v i

n1r! i 11
n v i 11

n

r! i
n 1r! i 11

n
~A3!

qi 11/2
n 5H qi

n1Dx¹ i
nq/2 if v i

n.0,

qi 11
n 2Dx¹ i 11

n q/2 if v i
n,0.

~A4!

In Eq. ~A4!,

¹ i
nq5H 2D i 21/2

n qD i 11/2
n q

D i 21/2
n q1D i 11/2

n q
if D i 21/2

n qD i 11/2
n q.0,

0 otherwise,
~A5!

whereD i 11/2
n q5(qi 11

n 2qi
n)/Dx. In many van Leer schemes

the termq1Dx¹q/2 in Eq. ~A4! is replaced by the time-
averaging expressionq1(Dx2vDT)¹q/2. Since we use a
predictor-corrector method, we do not need to time avera

APPENDIX B: NEWTONIAN LIMIT OF THE EULER
EQUATION IN A ROTATING FRAME

Here we recover the Newtonian Euler equation in a ro
ing frame, as given for instance in@69#, taking the weak-field
limit of the general relativistic Euler equation. All variable
and differential operators are given in the rotating fram
with the exception of ‘‘barred’’ quantities that reside in th
inertial frame. For simplicity, we will work with the genera
relativistic Euler equation written as a function of the va
able ûk , defined as

ûk[huk5ĝkiu
0he4f~v i1b i !. ~B1!

Accordingly, we have
4-19
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] t~r!ûk!1] i~r!ûkv
i !52ae6f]kP2r!u0ah]ka

2r!û j]kb
j

22
r!h~~u0a!221!

u0
]kf

1
r!e24fûi û j

2u0h
]kĝ

i j , ~B2!

wherer! andh are defined in Sec. III A. Using the continu
ity Eq. ~24! we can rewrite the left-hand side~LHS! of Eq.
~B2! as

] t~r!ûk!1] i~r!ûkv
i !5r!~] tûk1v i] i ûk!. ~B3!

To obtain the Newtonian limit, we expand the different term
in Eq. ~B2! to first order in the Newtonian potentialfN and
the square of the fluid velocityv. For instance,

ĝki→dki

u0→11
v2

2

h→1

ef→122fN ~B4!

a→11fN

b i5b̄ i1~VW 3rW ! i→~VW 3rW ! i ,

where b̄ i is the shift vector in an inertial frame,VW is the
angular velocity of the rotating frame with respect to t
inertial frame, andrW[(x,y,z) is the position vector. The
limits ~B4! combined with Eq.~B1! give

ûk→vk1~VW 3rW !k. ~B5!

We proceed now to take the Newtonian limit of the righ
hand side~RHS! of Eq. ~B3!. To do so, we note that

] tûk→] tv
k1] t~VW 3rW !k5] tv

k ~B6!

since] tVW 5] trW50, and

v i] i ûk→v i] i@vk1~VW 3rW !k#5v i] iv
k1~VW 3vW !k. ~B7!

These conditions together with Eq.~B3! give the Newtonian
limit of the LHS of equation~B2!,

] t~r!ûk!1] i~r!ûkv
i !→r!@] tv

k1v i] iv
k1~VW 3vW !k#.

~B8!

To work on the RHS of Eq.~B2! to Newtonian order, we
derive the following limits using Eqs.~B4!, again keeping
only the first order terms infN andv2:
02400
s

ae6f]kP→]kP

r!u0ha]ka→r!]kfN

2r!h
@~u0a!221#

u0 ]kf→0 ~B9!

r!e24f

2u0h
ûi û j]kĝ

i j →0.

The final term is composed using Eq.~B5!:

r!û j]kb
j→r!@v j1~VW 3rW ! j #]k~VW 3rW ! j . ~B10!

We rewrite the first term above as

r!v j]k~VW 3rW ! j5r!v j~VW 3]krW ! j

5r!ek jnv jVn

52r!~VW 3vW !k, ~B11!

and the second term as

r!~VW 3rW ! j]k~VW 3rW ! j52r!@VW 3~VW 3rW !#k. ~B12!

Combining Eqs.~B8!, ~B9!, ~B11! and ~B12!, yields

r!@] tv
k1v i] iv

k1~VW 3vW !k#52]kP2r!]kfN2r!~VW 3vW !k

2r!~VW 3~VW 3rW !!k. ~B13!

By rearranging terms and replacingr! by its limit the mass
densityr yields the Newtonian limit of the general relativis
tic Euler equation~B2! :

] tv
k1v i] iv

k52
1

r
]kP2]kfN22~VW 3vW !k

2@VW 3~VW 3rW !#k, ~B14!

where the last two terms of the RHS correspond to the
miliar Coriolis and centrifugal force terms.

APPENDIX C: ADM MASS AND ANGULAR MOMENTUM
IN ROTATING FRAMES

In this appendix, the ‘‘barred’’ fields represent variables
the inertial frame, while the non-barred ones are quantitie
rotating frames. In Sec. V we defined the total mass and
angular momentum of an asymptotically flat spacetime
two surface integrals@Eqs.~61! and~62!, respectively# which
characterize the asymptotic behavior of the metric on a t
slice. These surface integrals were transformed into the
ume integrals~63! and ~64! according to the calculation de
scribed in @33#. These volume integrals are numerical
evaluated in our code on the computational grid. Wh
4-20
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working in rotating frames, one might worry that these in
grals do not apply, since the 4-metric is not asymptotica
flat due to theVW 3rW term in the shift. It turns out that this i
not a problem, since the surface integral formulas forM and
J can be obtained assuming only that the 3-metric and
trinsic curvature are asymptotically flat@70#. Therefore, we
can evaluate the volume integrals~63! and ~64! in the rotat-
ing frame and be sure that theM andJ that we find at a given
time will be the same as what we would have found
transforming into an inertial frame and then computing
integrals. We can see this explicitly by transforming the
tegrands from an inertial to a rotating frame. For examp
the mass~63! written in terms of the ‘‘barred’’ inertial frame
quantities is
et

,

tt.
J.

i
ud

ill

. J
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M5E
V
Fe5f̄S r̄1

1

16p
Ā̃i j Ā̃

i j 2
1

24p
K̄2D2

1

16p
Ḡ̃ i jk Ḡ̃ j ik

1
12ef̄

16p
R̄̃Gd3x̄. ~C1!

For simplicity, we take the inertial coordinate system to
the one which is instantaneously aligned with our rotat
frame at the time that we are computingM andJ. Then the
transformation is given by Eqs.~51!, ~52!, and ~53!. @From
Eq. ~7!, we see thatr is an invariant.# Applying these rules,
we see that every term in the integrand is identical in
inertial and rotating frames. The same is true of the in
grands forJ andM0.
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